49 research outputs found

    Extensible Database Simulator for Fast Prototyping In-Database Algorithms

    Full text link
    With the rapid increasing of data scale, in-database analytics and learning has become one of the most studied topics in data science community, because of its significance on reducing the gap between the management and the analytics of data. By extending the capability of database on analytics and learning, data scientists can save much time on exchanging data between databases and external analytic tools. For this goal, researchers are attempting to integrate more data science algorithms into database. However, implementing the algorithms in mainstream databases is super time-consuming, especially when it is necessary to have a deep dive into the database kernels. Thus there are demands for an easy-to-extend database simulator to help fast prototype and verify the in-database algorithms before implementing them in real databases. In this demo, we present such an extensible relational database simulator, DBSim, to help data scientists prototype their in-database analytics and learning algorithms and verify the effectiveness of their ideas with minimal cost. DBSim simulates a real relational database by integrating all the major components in mainstream RDBMS, including SQL parser, relational operators, query optimizer, etc. In addition, DBSim provides various interfaces for users to flexibly plug their custom extension modules into any of the major components, without modifying the kernel. By those interfaces, DBSim supports easy extensions on SQL syntax, relational operators, query optimizer rules and cost models, and physical plan execution. Furthermore, DBSim provides utilities to facilitate users' developing and debugging, like query plan visualizer and interactive analyzer on optimization rules. We develop DBSim using pure Python to support seamless implementation of most data science algorithms into it, since many of them are written in Python

    Query-Driven Sampling for Collective Entity Resolution

    Full text link
    Probabilistic databases play a preeminent role in the processing and management of uncertain data. Recently, many database research efforts have integrated probabilistic models into databases to support tasks such as information extraction and labeling. Many of these efforts are based on batch oriented inference which inhibits a realtime workflow. One important task is entity resolution (ER). ER is the process of determining records (mentions) in a database that correspond to the same real-world entity. Traditional pairwise ER methods can lead to inconsistencies and low accuracy due to localized decisions. Leading ER systems solve this problem by collectively resolving all records using a probabilistic graphical model and Markov chain Monte Carlo (MCMC) inference. However, for large datasets this is an extremely expensive process. One key observation is that, such exhaustive ER process incurs a huge up-front cost, which is wasteful in practice because most users are interested in only a small subset of entities. In this paper, we advocate pay-as-you-go entity resolution by developing a number of query-driven collective ER techniques. We introduce two classes of SQL queries that involve ER operators --- selection-driven ER and join-driven ER. We implement novel variations of the MCMC Metropolis Hastings algorithm to generate biased samples and selectivity-based scheduling algorithms to support the two classes of ER queries. Finally, we show that query-driven ER algorithms can converge and return results within minutes over a database populated with the extraction from a newswire dataset containing 71 million mentions

    LIDER: An Efficient High-dimensional Learned Index for Large-scale Dense Passage Retrieval

    Full text link
    Many recent approaches of passage retrieval are using dense embeddings generated from deep neural models, called "dense passage retrieval". The state-of-the-art end-to-end dense passage retrieval systems normally deploy a deep neural model followed by an approximate nearest neighbor (ANN) search module. The model generates embeddings of the corpus and queries, which are then indexed and searched by the high-performance ANN module. With the increasing data scale, the ANN module unavoidably becomes the bottleneck on efficiency. An alternative is the learned index, which achieves significantly high search efficiency by learning the data distribution and predicting the target data location. But most of the existing learned indexes are designed for low dimensional data, which are not suitable for dense passage retrieval with high-dimensional dense embeddings. In this paper, we propose LIDER, an efficient high-dimensional Learned Index for large-scale DEnse passage Retrieval. LIDER has a clustering-based hierarchical architecture formed by two layers of core models. As the basic unit of LIDER to index and search data, a core model includes an adapted recursive model index (RMI) and a dimension reduction component which consists of an extended SortingKeys-LSH (SK-LSH) and a key re-scaling module. The dimension reduction component reduces the high-dimensional dense embeddings into one-dimensional keys and sorts them in a specific order, which are then used by the RMI to make fast prediction. Experiments show that LIDER has a higher search speed with high retrieval quality comparing to the state-of-the-art ANN indexes on passage retrieval tasks, e.g., on large-scale data it achieves 1.2x search speed and significantly higher retrieval quality than the fastest baseline in our evaluation. Furthermore, LIDER has a better capability of speed-quality trade-off.Comment: Accepted by VLDB 202

    MythQA: Query-Based Large-Scale Check-Worthy Claim Detection through Multi-Answer Open-Domain Question Answering

    Full text link
    Check-worthy claim detection aims at providing plausible misinformation to downstream fact-checking systems or human experts to check. This is a crucial step toward accelerating the fact-checking process. Many efforts have been put into how to identify check-worthy claims from a small scale of pre-collected claims, but how to efficiently detect check-worthy claims directly from a large-scale information source, such as Twitter, remains underexplored. To fill this gap, we introduce MythQA, a new multi-answer open-domain question answering(QA) task that involves contradictory stance mining for query-based large-scale check-worthy claim detection. The idea behind this is that contradictory claims are a strong indicator of misinformation that merits scrutiny by the appropriate authorities. To study this task, we construct TweetMythQA, an evaluation dataset containing 522 factoid multi-answer questions based on controversial topics. Each question is annotated with multiple answers. Moreover, we collect relevant tweets for each distinct answer, then classify them into three categories: "Supporting", "Refuting", and "Neutral". In total, we annotated 5.3K tweets. Contradictory evidence is collected for all answers in the dataset. Finally, we present a baseline system for MythQA and evaluate existing NLP models for each system component using the TweetMythQA dataset. We provide initial benchmarks and identify key challenges for future models to improve upon. Code and data are available at: https://github.com/TonyBY/Myth-QAComment: Accepted by SIGIR 202

    ChronoR: Rotation Based Temporal Knowledge Graph Embedding

    Full text link
    Despite the importance and abundance of temporal knowledge graphs, most of the current research has been focused on reasoning on static graphs. In this paper, we study the challenging problem of inference over temporal knowledge graphs. In particular, the task of temporal link prediction. In general, this is a difficult task due to data non-stationarity, data heterogeneity, and its complex temporal dependencies. We propose Chronological Rotation embedding (ChronoR), a novel model for learning representations for entities, relations, and time. Learning dense representations is frequently used as an efficient and versatile method to perform reasoning on knowledge graphs. The proposed model learns a k-dimensional rotation transformation parametrized by relation and time, such that after each fact's head entity is transformed using the rotation, it falls near its corresponding tail entity. By using high dimensional rotation as its transformation operator, ChronoR captures rich interaction between the temporal and multi-relational characteristics of a Temporal Knowledge Graph. Experimentally, we show that ChronoR is able to outperform many of the state-of-the-art methods on the benchmark datasets for temporal knowledge graph link prediction

    Can Knowledge Graphs Simplify Text?

    Full text link
    Knowledge Graph (KG)-to-Text Generation has seen recent improvements in generating fluent and informative sentences which describe a given KG. As KGs are widespread across multiple domains and contain important entity-relation information, and as text simplification aims to reduce the complexity of a text while preserving the meaning of the original text, we propose KGSimple, a novel approach to unsupervised text simplification which infuses KG-established techniques in order to construct a simplified KG path and generate a concise text which preserves the original input's meaning. Through an iterative and sampling KG-first approach, our model is capable of simplifying text when starting from a KG by learning to keep important information while harnessing KG-to-text generation to output fluent and descriptive sentences. We evaluate various settings of the KGSimple model on currently-available KG-to-text datasets, demonstrating its effectiveness compared to unsupervised text simplification models which start with a given complex text. Our code is available on GitHub.Comment: Accepted as a Main Conference Long Paper at CIKM 202
    corecore