2,052 research outputs found

    Gaussian integral means of entire functions: logarithmic convexity and concavity

    Full text link
    For 0<p<∞0<p<\infty and α∈(βˆ’βˆž,∞)\alpha\in (-\infty,\infty) we determine when the LpL^p integral mean on {z∈C:∣zβˆ£β‰€r}\{z\in\mathbb C: |z|\le r\} of an entire function with respect to the Gaussian area measure eβˆ’Ξ±βˆ£z∣2 dA(z)e^{-\alpha|z|^2}\,dA(z) is logarithmic convex or logarithmic concave.Comment: 9 page

    Gaussian Integral Means of Entire Functions

    Full text link
    For an entire mapping f:C↦Cf:\mathbb C\mapsto\mathbb C and a triple (p,Ξ±,r)∈(0,∞)Γ—(βˆ’βˆž,∞)Γ—(0,∞](p,\alpha, r)\in (0,\infty)\times(-\infty,\infty)\times(0,\infty], the Gaussian integral means of ff (with respect to the area measure dAdA) is defined by Mp,Ξ±(f,r)=(∫∣z∣<reβˆ’Ξ±βˆ£z∣2dA(z))βˆ’1∫∣z∣<r∣f(z)∣peβˆ’Ξ±βˆ£z∣2dA(z). {\mathsf M}_{p,\alpha}(f,r)=\Big({\int_{|z|<r}e^{-\alpha|z|^2}dA(z)}\Big)^{-1}{\int_{|z|<r}|f(z)|^p{e^{-\alpha|z|^2}}dA(z)}. Via deriving a maximum principle for Mp,Ξ±(f,r){\mathsf M}_{p,\alpha}(f,r), we establish not only Fock-Sobolev trace inequalities associated with Mp,p/2(zmf(z),∞){\mathsf M}_{p,p/2}(z^m f(z),\infty) (as m=0,1,2,...m=0,1,2,...), but also convexities of r↦ln⁑Mp,Ξ±(zm,r)r\mapsto\ln {\mathsf M}_{p,\alpha}(z^m,r) and r↦M2,Ξ±<0(f,r)r\mapsto {\mathsf M}_{2,\alpha<0}(f,r) in ln⁑r\ln r with 0<r<∞0<r<\infty.Comment: 18 page
    • …
    corecore