62 research outputs found

    CNM: An Interpretable Complex-valued Network for Matching

    Full text link
    This paper seeks to model human language by the mathematical framework of quantum physics. With the well-designed mathematical formulations in quantum physics, this framework unifies different linguistic units in a single complex-valued vector space, e.g. words as particles in quantum states and sentences as mixed systems. A complex-valued network is built to implement this framework for semantic matching. With well-constrained complex-valued components, the network admits interpretations to explicit physical meanings. The proposed complex-valued network for matching (CNM) achieves comparable performances to strong CNN and RNN baselines on two benchmarking question answering (QA) datasets

    Learning to Diversify Web Search Results with a Document Repulsion Model

    Get PDF
    Search diversification (also called diversity search), is an important approach to tackling the query ambiguity problem in information retrieval. It aims to diversify the search results that are originally ranked according to their probabilities of relevance to a given query, by re-ranking them to cover as many as possible different aspects (or subtopics) of the query. Most existing diversity search models heuristically balance the relevance ranking and the diversity ranking, yet lacking an efficient learning mechanism to reach an optimized parameter setting. To address this problem, we propose a learning-to-diversify approach which can directly optimize the search diversification performance (in term of any effectiveness metric). We first extend the ranking function of a widely used learning-to-rank framework, i.e., LambdaMART, so that the extended ranking function can correlate relevance and diversity indicators. Furthermore, we develop an effective learning algorithm, namely Document Repulsion Model (DRM), to train the ranking function based on a Document Repulsion Theory (DRT). DRT assumes that two result documents covering similar query aspects (i.e., subtopics) should be mutually repulsive, for the purpose of search diversification. Accordingly, the proposed DRM exerts a repulsion force between each pair of similar documents in the learning process, and includes the diversity effectiveness metric to be optimized as part of the loss function. Although there have been existing learning based diversity search methods, they often involve an iterative sequential selection process in the ranking process, which is computationally complex and time consuming for training, while our proposed learning strategy can largely reduce the time cost. Extensive experiments are conducted on the TREC diversity track data (2009, 2010 and 2011). The results demonstrate that our model significantly outperforms a number of baselines in terms of effectiveness and robustness. Further, an efficiency analysis shows that the proposed DRM has a lower computational complexity than the state of the art learning-to-diversify methods

    On Elastic Language Models

    Full text link
    Large-scale pretrained language models have achieved compelling performance in a wide range of language understanding and information retrieval tasks. Knowledge distillation offers an opportunity to compress a large language model to a small one, in order to reach a reasonable latency-performance tradeoff. However, for scenarios where the number of requests (e.g., queries submitted to a search engine) is highly variant, the static tradeoff attained by the compressed language model might not always fit. Once a model is assigned with a static tradeoff, it could be inadequate in that the latency is too high when the number of requests is large or the performance is too low when the number of requests is small. To this end, we propose an elastic language model (ElasticLM) that elastically adjusts the tradeoff according to the request stream. The basic idea is to introduce a compute elasticity to the compressed language model, so that the tradeoff could vary on-the-fly along scalable and controllable compute. Specifically, we impose an elastic structure to enable ElasticLM with compute elasticity and design an elastic optimization to learn ElasticLM under compute elasticity. To serve ElasticLM, we apply an elastic schedule. Considering the specificity of information retrieval, we adapt ElasticLM to dense retrieval and reranking and present ElasticDenser and ElasticRanker respectively. Offline evaluation is conducted on a language understanding benchmark GLUE; and several information retrieval tasks including Natural Question, Trivia QA, and MS MARCO. The results show that ElasticLM along with ElasticDenser and ElasticRanker can perform correctly and competitively compared with an array of static baselines. Furthermore, online simulation with concurrency is also carried out. The results demonstrate that ElasticLM can provide elastic tradeoffs with respect to varying request stream.Comment: 27 pages, 11 figures, 9 table

    Smurfs: Leveraging Multiple Proficiency Agents with Context-Efficiency for Tool Planning

    Full text link
    The emergence of large language models (LLMs) has opened up unprecedented possibilities for automating complex tasks that are often comparable to human performance. Despite their capabilities, LLMs still encounter difficulties in completing tasks that require high levels of accuracy and complexity due to their inherent limitations in handling multifaceted problems single-handedly. This paper introduces `Smurfs', a cutting-edge multi-agent framework designed to revolutionize the application of LLMs. By seamlessly transforming a conventional LLM into a synergistic multi-agent ensemble, Smurfs can enhance the model's ability to solve complex tasks at no additional cost. This is achieved through innovative prompting strategies that allocate distinct roles within the model, thereby facilitating collaboration among specialized agents and forming an intelligent multi-agent system. Our empirical investigation on both open-ended task of StableToolBench and closed-ended task on HotpotQA showcases Smurfs' superior capability in intricate tool utilization scenarios. Notably, Smurfs outmatches all the baseline methods in both experiments, setting new state-of-the-art performance. Furthermore, through comprehensive ablation studies, we dissect the contribution of the core components of the multi-agent framework to its overall efficacy. This not only verifies the effectiveness of the framework, but also sets a route for future exploration of multi-agent LLM systems

    Injecting Knowledge into Biomedical Pre-trained Models via Polymorphism and Synonymous Substitution

    Full text link
    Pre-trained language models (PLMs) were considered to be able to store relational knowledge present in the training data. However, some relational knowledge seems to be discarded unsafely in PLMs due to \textbf{report bias}: low-frequency relational knowledge might be underexpressed compared to high-frequency one in PLMs. This gives us a hint that relational knowledge might not be redundant to the stored knowledge of PLMs, but rather be complementary. To additionally inject relational knowledge into PLMs, we propose a simple-yet-effective approach to inject relational knowledge into PLMs, which is inspired by three observations (namely, polymorphism, synonymous substitution, and association). In particular, we switch entities in the training corpus to related entities (either hypernyms/hyponyms/synonyms, or arbitrarily-related concepts). Experimental results show that the proposed approach could not only better capture relational knowledge, but also improve the performance in various biomedical downstream tasks. Our model is available in \url{https://github.com/StevenZHB/BioPLM_InjectingKnowledge}

    OVM, Outcome-supervised Value Models for Planning in Mathematical Reasoning

    Full text link
    Large language models (LLMs) often struggle with maintaining accuracy throughout multiple multiple reasoning steps, especially in mathematical reasoning where an error in earlier steps can propagate to subsequent ones and it ultimately leading to an incorrect answer. To reduce error propagation, guided decoding is employed to direct the LM decoding on a step-by-step basis. We argue that in guided decoding, assessing the potential of an incomplete reasoning path can be more advantageous than simply ensuring per-step correctness, as the former approach leads towards a correct final answer. This transforms the task into a value estimation\textit{value estimation} problem in planning. Inspired by the findings that outcome supervision for guided decoding essentially acts as a value model\textit{outcome supervision for guided decoding essentially acts as a value model}, we propose Outcome-supervised Value Model (OVM) that employs outcome supervision for training a value model, which prioritizes steps that lead to accurate conclusions. Furthermore, the OVM eliminates the need for labor-intensive annotations of step-level correctness, thereby significantly enhancing its scalability. Our experiments on two multi-step mathematical reasoning datasets, GSM8K and Game of 24, demonstrate the superior performance of the OVM model. Notably, in GSM8K, our OVM-7B model achieves state-of-the-art results among LLMs up to 13B parameters\textbf{OVM-7B model achieves state-of-the-art results among LLMs up to 13B parameters}; especially it does not utilize GPT-4 or code execution. These findings offer a novel perspective on the role of outcome supervision in training value models for multi-step reasoning tasks and provide theoretical justification for its advantage in value estimation for guided decoding.Comment: Accepted to NAACL findings. https://github.com/FreedomIntelligence/OV

    IRGAN: A Minimax Game for Unifying Generative and Discriminative Information Retrieval Models

    Get PDF
    This paper provides a unified account of two schools of thinking in information retrieval modelling: the generative retrieval focusing on predicting relevant documents given a query, and the discriminative retrieval focusing on predicting relevancy given a query-document pair. We propose a game theoretical minimax game to iteratively optimise both models. On one hand, the discriminative model, aiming to mine signals from labelled and unlabelled data, provides guidance to train the generative model towards fitting the underlying relevance distribution over documents given the query. On the other hand, the generative model, acting as an attacker to the current discriminative model, generates difficult examples for the discriminative model in an adversarial way by minimising its discrimination objective. With the competition between these two models, we show that the unified framework takes advantage of both schools of thinking: (i) the generative model learns to fit the relevance distribution over documents via the signals from the discriminative model, and (ii) the discriminative model is able to exploit the unlabelled data selected by the generative model to achieve a better estimation for document ranking. Our experimental results have demonstrated significant performance gains as much as 23.96% on Precision@5 and 15.50% on MAP over strong baselines in a variety of applications including web search, item recommendation, and question answering.Comment: 12 pages; appendix adde
    corecore