2,197 research outputs found
Pairing in the iron arsenides: a functional RG treatment
We study the phase diagram of a microscopic model for the superconducting
iron arsenides by means of a functional renormalization group. Our treatment
establishes a connection between a strongly simplified two-patch model by
Chubukov et al. and a five-band- analysis by Wang et al.. For a wide parameter
range, the dominant pairing instability occurs in the extended s-wave channel.
The results clearly show the relevance of pair scattering between electron and
hole pockets. We also give arguments that the phase transition between the
antiferromagnetic phase for the undoped system and the superconducting phase
may be first order
Coexistence of Itinerant Electrons and Local Moments in Iron-Based Superconductors
In view of the recent experimental facts in the iron-pnictides, we make a
proposal that the itinerant electrons and local moments are simultaneously
present in such multiband materials. We study a minimal model composed of
coupled itinerant electrons and local moments to illustrate how a consistent
explanation of the experimental measurements can be obtained in the leading
order approximation. In this mean-field approach, the spin-density-wave (SDW)
order and superconducting pairing of the itinerant electrons are not directly
driven by the Fermi surface nesting, but are mainly induced by their coupling
to the local moments. The presence of the local moments as independent degrees
of freedom naturally provides strong pairing strength for superconductivity and
also explains the normal-state linear-temperature magnetic susceptibility above
the SDW transition temperature. We show that this simple model is supported by
various anomalous magnetic properties and isotope effect which are in
quantitative agreement with experiments.Comment: 7 pages, 4 figures; an expanded versio
A survey of performance enhancement of transmission control protocol (TCP) in wireless ad hoc networks
This Article is provided by the Brunel Open Access Publishing Fund - Copyright @ 2011 Springer OpenTransmission control protocol (TCP), which provides reliable end-to-end data delivery, performs well in traditional wired network environments, while in wireless ad hoc networks, it does not perform well. Compared to wired networks, wireless ad hoc networks have some specific characteristics such as node mobility and a shared medium. Owing to these specific characteristics of wireless ad hoc networks, TCP faces particular problems with, for example, route failure, channel contention and high bit error rates. These factors are responsible for the performance degradation of TCP in wireless ad hoc networks. The research community has produced a wide range of proposals to improve the performance of TCP in wireless ad hoc networks. This article presents a survey of these proposals (approaches). A classification of TCP improvement proposals for wireless ad hoc networks is presented, which makes it easy to compare the proposals falling under the same category. Tables which summarize the approaches for quick overview are provided. Possible directions for further improvements in this area are suggested in the conclusions. The aim of the article is to enable the reader to quickly acquire an overview of the state of TCP in wireless ad hoc networks.This study is partly funded by Kohat University of Science & Technology (KUST),
Pakistan, and the Higher Education Commission, Pakistan
Effect of the tetrahedral distortion on the electronic properties of iron-pnictides
We study the dependence of the electronic structure of iron pnictides on the
angle formed by the arsenic-iron bonds. Within a Slater-Koster tight binding
model which captures the correct symmetry properties of the bands, we show that
the density of states and the band structure are sensitive to the distortion of
the tetrahedral environment of the iron atoms. This sensitivity is extremely
strong in a two-orbital (d_xz, d_yz) model due to the formation of a flat band
around the Fermi level. Inclusion of the d_xy orbital destroys the flat band
while keeping a considerable angle dependence in the band structure.Comment: 5 pages, including 5 figures. Fig. 5 replaced. Minor changes in the
tex
Spectroscopic scanning tunneling microscopy insights into Fe-based superconductors
In the first three years since the discovery of Fe-based high Tc
superconductors, scanning tunneling microscopy (STM) and spectroscopy have shed
light on three important questions. First, STM has demonstrated the complexity
of the pairing symmetry in Fe-based materials. Phase-sensitive quasiparticle
interference (QPI) imaging and low temperature spectroscopy have shown that the
pairing order parameter varies from nodal to nodeless s\pm within a single
family, FeTe1-xSex. Second, STM has imaged C4 -> C2 symmetry breaking in the
electronic states of both parent and superconducting materials. As a local
probe, STM is in a strong position to understand the interactions between these
broken symmetry states and superconductivity. Finally, STM has been used to
image the vortex state, giving insights into the technical problem of vortex
pinning, and the fundamental problem of the competing states introduced when
superconductivity is locally quenched by a magnetic field. Here we give a
pedagogical introduction to STM and QPI imaging, discuss the specific
challenges associated with extracting bulk properties from the study of
surfaces, and report on progress made in understanding Fe-based superconductors
using STM techniques.Comment: 36 pages, 23 figures, 229 reference
Pairing symmetry and properties of iron-based high temperature superconductors
Pairing symmetry is important to indentify the pairing mechanism. The
analysis becomes particularly timely and important for the newly discovered
iron-based multi-orbital superconductors. From group theory point of view we
classified all pairing matrices (in the orbital space) that carry irreducible
representations of the system. The quasiparticle gap falls into three
categories: full, nodal and gapless. The nodal-gap states show conventional
Volovik effect even for on-site pairing. The gapless states are odd in orbital
space, have a negative superfluid density and are therefore unstable. In
connection to experiments we proposed possible pairing states and implications
for the pairing mechanism.Comment: 4 pages, 1 table, 2 figures, polished versio
Anomalous Heat Conduction and Anomalous Diffusion in Low Dimensional Nanoscale Systems
Thermal transport is an important energy transfer process in nature. Phonon
is the major energy carrier for heat in semiconductor and dielectric materials.
In analogy to Ohm's law for electrical conductivity, Fourier's law is a
fundamental rule of heat transfer in solids. It states that the thermal
conductivity is independent of sample scale and geometry. Although Fourier's
law has received great success in describing macroscopic thermal transport in
the past two hundreds years, its validity in low dimensional systems is still
an open question. Here we give a brief review of the recent developments in
experimental, theoretical and numerical studies of heat transport in low
dimensional systems, include lattice models, nanowires, nanotubes and
graphenes. We will demonstrate that the phonon transports in low dimensional
systems super-diffusively, which leads to a size dependent thermal
conductivity. In other words, Fourier's law is breakdown in low dimensional
structures
Relativistic quantum effects of Dirac particles simulated by ultracold atoms
Quantum simulation is a powerful tool to study a variety of problems in
physics, ranging from high-energy physics to condensed-matter physics. In this
article, we review the recent theoretical and experimental progress in quantum
simulation of Dirac equation with tunable parameters by using ultracold neutral
atoms trapped in optical lattices or subject to light-induced synthetic gauge
fields. The effective theories for the quasiparticles become relativistic under
certain conditions in these systems, making them ideal platforms for studying
the exotic relativistic effects. We focus on the realization of one, two, and
three dimensional Dirac equations as well as the detection of some relativistic
effects, including particularly the well-known Zitterbewegung effect and Klein
tunneling. The realization of quantum anomalous Hall effects is also briefly
discussed.Comment: 22 pages, review article in Frontiers of Physics: Proceedings on
Quantum Dynamics of Ultracold Atom
Nuclear dependence of the transverse single-spin asymmetry in the production of charged hadrons at forward rapidity in polarized , Al, and Au collisions at GeV
We report on the nuclear dependence of transverse single-spin asymmetries
(TSSAs) in the production of positively-charged hadrons in polarized
, Al and Au collisions at
GeV. The measurements have been performed at forward
rapidity () over the range of GeV and
. We observed a positive asymmetry for
positively-charged hadrons in \polpp collisions, and a significantly reduced
asymmetry in + collisions. These results reveal a nuclear
dependence of charged hadron in a regime where perturbative techniques
are relevant. These results provide new opportunities to use \polpA collisions
as a tool to investigate the rich phenomena behind TSSAs in hadronic collisions
and to use TSSA as a new handle in studying small-system collisions.Comment: 303 authors from 66 institutions, 9 pages, 2 figures, 1 table. v1 is
version accepted for publication in Physical Review Letters. Plain text data
tables for the points plotted in figures for this and previous PHENIX
publications are (or will be) publicly available at
http://www.phenix.bnl.gov/papers.htm
- …