2 research outputs found
Critical Assessment of Hybrid RANS-LES Modeling for Attached and Separated Flows
The objective of this study is to evaluate a recently proposed dynamic hybrid Reynolds-averaged Navier-Stokes (RANS)-Large Eddy Simulation (LES) modeling framework that seeks to effectively address issues regarding RANS-to-LES transition and explicit grid dependence inherent in most current hybrid RANS-LES (HRL) models. RANS-to-LES transition in the investigated dynamic HRL (DHRL) model is based on the physical concept of maintaining continuity of total turbulence production using two rigorously separated turbulent stress parameters, where one is obtained from the RANS model and the other from the LES model. Computations of two canonical test cases—two-dimensional turbulent channel flow and backward facing step flow—were performed to assess the potential of the DHRL model for predicting both attached and separated turbulent flows. This investigation attempts to evaluate the ability of the DHRL method to reproduce the detailed physics of attached and separated turbulent flows, as well as to resolve the issues concerning log-layer mismatch and delayed break down of separated shear layers. The DHRL model simulation results are compared with experimental and DNS data, along with the computational results for other HRL and RANS models. In summary, these comparisons demonstrate that the DHRL framework does address many of the weaknesses inherent in most current HRL models