992 research outputs found

    A Revised Parallax and its Implications for RX J185635-3754

    Full text link
    New astrometric analysis of four WFPC2 images of the isolated neutron star RX J185635-3754 show that its distance is 117 +/- 12 pc, nearly double the originally published distance. At the revised distance, the star's age is 5 x 10^5 years, its space velocity is about 185 km/s, and its radiation radius inferred from thermal emission is approximately 15 km, in the range of many equations of state both with and without exotic matter. These measurements remove observational support for an extremely soft equation of state. The star's birthplace is still likely to be in the Upper Sco association, but a connection with zeta Oph is now unlikely.Comment: submitted to ApJ Letter

    Distance and Reddening of the Enigmatic Gamma-ray-Detected Nova V1324 Sco

    Get PDF
    It has recently been discovered that some, if not all, classical novae emit GeV gamma-rays during outburst. Despite using an unreliable method to determine its distance, previous work showed that nova V1324 Sco was the most gamma-ray luminous of all gamma-ray-detected novae. We present here a different, more robust, method to determine the reddening and distance to V1324 Sco using high-resolution optical spectroscopy. Using two independent methods we derived a reddening of E(B-V) = 1.16 +/- 0.12 and a distance rD > 6.5 kpc. This distance is >40% greater than previously estimated, meaning that V1324 Sco has an even higher gamma-ray luminosity than previously calculated. We also use periodic modulations in the brightness, interpreted as the orbital period, in conjunction with pre-outburst photometric limits to show that a main-sequence companion is strongly favored.Comment: Submitted to ApJ. 6 pages, 5 figure

    Transition region fluxes in A-F Dwarfs: Basal fluxes and dynamo activity

    Get PDF
    The transition region spectra of 87 late A and early F dwarfs and subgiants were analyzed. The emission line fluxes are uniformly strong in the early F stars, and drop off rapidly among the late A stars. The basal flux level in the F stars is consistent with an extrapolation of that observed among the G stars, while the magnetic component displays the same flux-flux relations seen among solar-like stars. Despite the steep decrease in transition region emission flux for B-V less than 0.28, C II emission is detected in alpha Aql (B-V = 0.22). The dropoff in emission is inconsistent with models of the mechanically generated acoustic flux available. It is concluded that, although the nonmagnetic basal heating is an increasingly important source of atmospheric heating among the early F stars, magnetic heating occurs in any star which has a sufficiently thick convective zone to generate acoustic heating

    Three Dimensional Structures in the Atmospheres of Cool Stars

    Get PDF
    This grant has supported my GHRS-related activities since 1990. This included both instrumental calibration activities and independent scientific research using the Goddard High Resolution Spectrograph on the Hubble Space Telescope. The activities under this grant are essentially complete. Publications to date which have resulted in whole or in part from this grant are included

    The [Ne III] Jet of DG Tau and its Ionization Scenarios

    Full text link
    Forbidden neon emission from jets of low-mass young stars can be used to probe the underlying high-energy processes in these systems. We analyze spectra of the jet of DG Tau obtained with the Very Large Telescope/X-Shooter spectrograph in 2010. [Ne III] λ\lambda3869 is clearly detected in the innermost 3" microjet and the outer knot located at \sim6".5. The velocity structure of the inner microjet can be decomposed into the low-velocity component (LVC) at 70\sim -70 km/s and the high-velocity component (HVC) at 180\sim -180 km/s. Based on the observed [Ne III] flux and its spatial extent, we suggest the origins of the [Ne III] emission regions and their relation with known X-ray sources along the jet. The flares from the hard X-ray source close to the star may be the main ionization source of the innermost microjet. The fainter soft X-ray source at 0".2 from the star may provide sufficient heating to help to sustain the ionization fraction against the recombination in the flow. The outer knot may be reionized by shocks faster than 100 km/s such that [Ne III] emission reappears and that the soft X-ray emission at 5".5 is produced. Velocity decomposition of the archival Hubble Space Telescope spectra obtained in 1999 shows that the HVC had been faster, with a velocity centroid of 260\sim -260 km/s. Such a decrease in velocity may potentially be explained by the expansion of the stellar magnetosphere, changing the truncation radius and thus the launching speed of the jet. The energy released by magnetic reconnections during relaxation of the transition can heat the gas up to several tens of megakelvin and provide the explanation for on-source keV X-ray flares that ionize the neon microjet

    Velocity-Resolved [Ne III] from X-Ray Irradiated Sz 102 Microjets

    Full text link
    Neon emission lines are good indicators of high-excitation regions close to a young stellar system because of their high ionization potentials and large critical densities. We have discovered [Ne III]{\lambda}3869 emission from the microjets of Sz 102, a low-mass young star in Lupus III. Spectroastrometric analyses of two-dimensional [Ne III] spectra obtained from archival high-dispersion (R33,000R\approx 33,000) Very Large Telescope/UVES data suggest that the emission consists of two velocity components spatially separated by ~ 0."3, or a projected distance of ~ 60 AU. The stronger redshifted component is centered at ~ +21 km/s with a line width of ~ 140 km/s, and the weaker blueshifted component at ~ -90 km/s with a line width of ~ 190 km/s. The two components trace velocity centroids of the known microjets and show large line widths that extend across the systemic velocity, suggesting their potential origins in wide-angle winds that may eventually collimate into jets. Optical line ratios indicate that the microjets are hot (T1.6×104T\lesssim1.6\times10^4 K) and ionized (ne5.7×104n_e\gtrsim5.7\times10^4 cm3^{-3}). The blueshifted component has ~ 13% higher temperature and ~ 46% higher electron density than the redshifted counterpart, forming a system of asymmetric pair of jets. The detection of the [Ne III]{\lambda}3869 line with the distinct velocity profile suggests that the emission originates in flows that may have been strongly ionized by deeply embedded hard X-ray sources, most likely generated by magnetic processes. The discovery of [Ne III]{\lambda}3869 emission along with other optical forbidden lines from Sz 102 support the picture of wide-angle winds surrounding magnetic loops in the close vicinity of the young star. Future high sensitivity X-ray imaging and high angular-resolution optical spectroscopy may help confirm the picture proposed.Comment: 33 pages, 9 figures, 2 tables; accepted for publication in the ApJ (minor typo and reference list fixed

    Doppler imaging of AR Lacertae at three epochs

    Get PDF
    Observations from IUE were used to study the structure of the lower chromosphere of AR Lacertae in the light of Mg II k. Sequences of LWR/P-HI images distributed around the binary period at three epochs were obtained. Discrete plage-like regions of enhanced Mg II surface flux in this system are identified. There are temporal variations in the Mg II flux on timescales of hours as well as substantial changes in chromospheric morphology on timescales of years. Even with the limited S/N attainable with the IUE, one can map the gross structures of active stellar atmospheres. With such information, one can begin to study the true 3-D structure of the atmospheres of late-type stars

    Doppler Probe of Accretion onto a T Tauri star

    Full text link
    The YY Ori stars are T Tauri stars with prominent time-variable redshifted absorption components that flank certain emission lines. One of the brightest in this class is S CrA, a visual double star. We have obtained a series of high-resolution spectra of the two components during four nights with the UVES spectrograph at the Very Large Telescope. We followed the spectral changes occurring in S CrA to derive the physical structure of the accreting gas. We found that both stars are very similar with regard to surface temperature, radius, and mass. Variable redshifted absorption components are particularly prominent in the SE component. During one night, this star developed a spectrum unique among the T Tauri stars: extremely strong and broad redshifted absorption components appeared in many lines of neutral and ionized metals, in addition to those of hydrogen and helium. The absorption depths of cooler, low ionization lines peak at low velocities - while more highly ionized lines have peak absorption depths at high velocities. The different line profiles indicate that the temperature and density of the accretion stream increase as material approaches the star. We derive the physical conditions of the flow at several points along the accretion funnel directly from the spectrum of the infalling gas. We estimated mass accretion rates of about 10^(-7) solar masses per year, which is similar to that derived from the relation based on the strength of H alpha emission line. This is the first time the density and temperature distributions in accretion flows around a T Tauri star have been inferred from observations. Compared with predictions from standard models of accretion in T Tauri stars, which assume a dipole stellar magnetic field, we obtained higher densities and a steeper temperature rise toward the star.Comment: Replaces 1408.1846 4 pages, 4 figures. Appears in Astronomy and Astrophysics, 201

    The Origins of Fluorescent H_2 Emission From T Tauri Stars

    Get PDF
    We survey fluorescent H_2 emission in HST STIS spectra of the classical T Tauri stars (CTTSs) TW Hya, DF Tau, RU Lupi, T Tau, and DG Tau, and the weak-lined T Tauri star (WTTS) V836 Tau. From each of those sources we detect between 41 and 209 narrow H_2 emission lines, most of which are pumped by strong Lyα emission. H_2 emission is not detected from the WTTS V410 Tau. The fluorescent H_2 emission appears to be common to circumstellar environments around all CTTSs, but high spectral and spatial resolution STIS observations reveal diverse phenomenon. Blueshifted H_2 emission detected from RU Lupi, T Tau, and DG Tau is consistent with an origin in an outflow. The H_2 emission from TW Hya, DF Tau, and V836 Tau is centered at the radial velocity of the star and is consistent with an origin in a warm disk surface. The H_2 lines from RU Lupi, DF Tau, and T Tau also have excess blueshifted H_2 emission that extends to as much as -100 km s^(-1). The strength of this blueshifted component from DF Tau and T Tau depends on the upper level of the transition. In all cases, the small aperture and attenuation of H_2 emission by stellar winds restricts the H_2 emission to be formed close to the star. In the observation of RU Lupi, the Lyα emission and the H_2 emission that is blueshifted by 15 km s^(-1) are extended to the SW by ~0".07, although the faster H_2 gas that extends to ~100 km s^(-1) is not spatially extended. We also find a small reservoir of H_2 emission from TW Hya and DF Tau consistent with an excitation temperature of ~2.5 × 10^4 K
    corecore