20,205 research outputs found

### Metal alloy resistivity measurements at very low temperatures

High speed, automated system accurately measures to approximately one percent in three minutes. System identifies materials having constant thermal or electric conductivity, predicts new material properties, develops alloys in accordance with desired specifications, and develops nondestructive devices for measuring precipitation hardening

### Observation of Single Transits in Supercooled Monatomic Liquids

A transit is the motion of a system from one many-particle potential energy
valley to another. We report the observation of transits in molecular dynamics
(MD) calculations of supercooled liquid argon and sodium. Each transit is a
correlated simultaneous shift in the equilibrium positions of a small local
group of particles, as revealed in the fluctuating graphs of the particle
coordinates versus time. This is the first reported direct observation of
transit motion in a monatomic liquid in thermal equilibrium. We found transits
involving 2 to 11 particles, having mean shift in equilibrium position on the
order of 0.4 R_1 in argon and 0.25 R_1 in sodium, where R_1 is the nearest
neighbor distance. The time it takes for a transit to occur is approximately
one mean vibrational period, confirming that transits are fast.Comment: 19 pages, 8 figure

### Adiabatic and Non-Adiabatic Contributions to the Free Energy from the Electron-Phonon Interaction for Na, K, Al, and Pb

We calculate the adiabatic contributions to the free energy due to the
electron--phonon interaction at intermediate temperatures, $0 \leqslant k_{B} T
< \epsilon_{F}$ for the elemental metals Na, K, Al, and Pb. Using our
previously published results for the nonadiabatic contributions we show that
the adiabatic contribution, which is proportional to $T^{2}$ at low
temperatures and goes as $T^{3}$ at high temperatures, dominates the
nonadiabatic contribution for temperatures above a cross--over temperature,
$T_{c}$, which is between 0.5 and 0.8 $T_{m}$, where $T_{m}$ is the melting
temperature of the metal. The nonadiabatic contribution falls as $T^{-1}$ for
temperatures roughly above the average phonon frequency.Comment: Updated versio

### On the accuracy of the melting curves drawn from modelling a solid as an elastic medium

An ongoing problem in the study of a classical many-body system is the
characterization of its equilibrium behaviour by theory or numerical
simulation. For purely repulsive particles, locating the melting line in the
pressure-temperature plane can be especially hard if the interparticle
potential has a softened core or contains some adjustable parameters. A method
is hereby presented that yields reliable melting-curve topologies with
negligible computational effort. It is obtained by combining the Lindemann
melting criterion with a description of the solid phase as an elastic
continuum. A number of examples are given in order to illustrate the scope of
the method and possible shortcomings. For a two-body repulsion of Gaussian
shape, the outcome of the present approach compares favourably with the more
accurate but also more computationally demanding self-consistent harmonic
approximation.Comment: 25 pages, 7 figure

### Scaling Analysis and Evolution Equation of the North Atlantic Oscillation Index Fluctuations

The North Atlantic Oscillation (NAO) monthly index is studied from 1825 till
2002 in order to identify the scaling ranges of its fluctuations upon different
delay times and to find out whether or not it can be regarded as a Markov
process. A Hurst rescaled range analysis and a detrended fluctuation analysis
both indicate the existence of weakly persistent long range time correlations
for the whole scaling range and time span hereby studied. Such correlations are
similar to Brownian fluctuations. The Fokker-Planck equation is derived and
Kramers-Moyal coefficients estimated from the data. They are interpreted in
terms of a drift and a diffusion coefficient as in fluid mechanics. All partial
distribution functions of the NAO monthly index fluctuations have a form close
to a Gaussian, for all time lags, in agreement with the findings of the scaling
analyses. This indicates the lack of predictive power of the present NAO
monthly index. Yet there are some deviations for large (and thus rare) events.
Whence suggestions for other measurements are made if some improved
predictability of the weather/climate in the North Atlantic is of interest. The
subsequent Langevin equation of the NAO signal fluctuations is explicitly
written in terms of the diffusion and drift parameters, and a characteristic
time scale for these is given in appendix.Comment: 6 figures, 54 refs., 16 pages; submitted to Int. J. Mod. Phys. C:
Comput. Phy

### The Evolution of Optical Depth in the Ly-alpha Forest: Evidence Against Reionization at z~6

We examine the evolution of the IGM Ly-alpha optical depth distribution using
the transmitted flux probability distribution function (PDF) in a sample of 63
QSOs spanning absorption redshifts 1.7 < z < 5.8. The data are compared to two
theoretical optical depth distributions: a model distribution based on the
density distribution of Miralda-Escude et al. (2000) (MHR00), and a lognormal
distribution. We assume a uniform UV background and an isothermal IGM for the
MHR00 model, as has been done in previous works. Under these assumptions, the
MHR00 model produces poor fits to the observed flux PDFs at redshifts where the
optical depth distribution is well sampled, unless large continuum corrections
are applied. However, the lognormal optical depth distribution fits the data at
all redshifts with only minor continuum adjustments. We use a simple
parametrization for the evolution of the lognormal parameters to calculate the
expected mean transmitted flux at z > 5.4. The lognormal optical depth
distribution predicts the observed Ly-alpha and Ly-beta effective optical
depths at z > 5.7 while simultaneously fitting the mean transmitted flux down
to z = 1.6. If the evolution of the lognormal distribution at z < 5 reflects a
slowly-evolving density field, temperature, and UV background, then no sudden
change in the IGM at z ~ 6 due to late reionization appears necessary. We have
used the lognormal optical depth distribution without any assumption about the
underlying density field. If the MHR00 density distribution is correct, then a
non-uniform UV background and/or IGM temperature may be required to produce the
correct flux PDF. We find that an inverse temperature-density relation greatly
improves the PDF fits, but with a large scatter in the equation of state index.
[Abridged]Comment: 45 pages, 16 figures, submitted to Ap

- â€¦