13 research outputs found

    Niosomes Consisting of Tween-60 and Cholesterol Improve the Chemical Stability and Antioxidant Activity of (−)-Epigallocatechin Gallate under Intestinal Tract Conditions

    No full text
    In order to improve the chemical stability and antioxidant activity of (−)-epigallocatechin gallate (EGCG) in the gastrointestinal tract, niosomes composed of Tween-60 and cholesterol were developed to encapsulate EGCG in this investigation. EGCG loaded niosomes with encapsulation efficiency around 76% exhibited a small <i>Z</i>-average diameter about 60 nm. Compared to free EGCG, the EGCG remaining in dialysis tubes was significantly improved for niosomes at pH 2 and 7.4. Meanwhile, the residual EGCG for niosomes increased from 3% to 49% after 2 h incubation in simulated intestinal fluid (SIF). Pancreatin was found to impact the stability of niosomes in SIF mainly. Furthermore, the results from ferric reducing antioxidant power and cellular antioxidant activity tests indicated that EGCG loaded niosomes exhibited stronger antioxidant ability than free EGCG during intestinal digestion. Thus, we can infer that niosomal encapsulation might be a promising approach to improve the oral bioavailability of EGCG in the body

    Cellular Uptake of β‑Carotene from Protein Stabilized Solid Lipid Nanoparticles Prepared by Homogenization–Evaporation Method

    No full text
    With a homogenization–evaporation method, β-carotene (BC) loaded nanoparticles were prepared with different ratios of food-grade sodium caseinate (SC), whey protein isolate (WPI), or soy protein isolate (SPI) to BC and evaluated for their physiochemical stability, <i>in vitro</i> cytotoxicity, and cellular uptake by Caco-2 cells. The particle diameters of the BC loaded nanoparticles with 0.75% SC or 1.0% WPI emulsifiers were 75 and 90 nm, respectively. Mean particle diameters of three BC loaded nanoparticle nanoemulsions increased less than 10% at 4 °C while they increased more at 25 °C (10–76%) during 30 days of storage. The oxidative stability of BC loaded nanoparticles encapsulated by proteins decreased in the following order: SC > WPI > SPI. The retention rates of BC in nanoparticles were 63.5%, 60.5%, and 41.8% for SC, WPI, and SPI, respectively, after 30 days of storage at 25 °C. The BC’s chemical stability was improved by increasing the concentration of protein. Both the rate of particle growth and the total BC loss at 25 °C were larger than at 4 °C. The color of BC loaded nanoparticles decreased with increasing storage in the dark without oxygen, similar to the decrease in BC content of nanoparticles at 4 and 25 °C. Almost no cytotoxicity due to BC loaded nanoparticles cellular uptake was observed, especially when diluted 10 times or more. The uptake of BC was significantly improved through nanoparticle delivery systems by 2.6-, 3.4-, and 1.7-fold increase, respectively, for SC, WPI, and SPI, as compared to the free BC. The results of this study indicate that protein stabilized, BC loaded nanoparticles can improve stability and uptake of BC

    Discovery of a Novel Bioactive Compound in Orange Peel Polar Fraction on the Inhibition of Trimethylamine and Trimethylamine <i>N</i>‑Oxide through Metabolomics Approaches and <i>In Vitro</i> and <i>In Vivo</i> Assays: Feruloylputrescine Inhibits Trimethylamine via Suppressing cntA/B Enzyme

    No full text
    This study compares the inhibitory effects of orange peel polar fraction (OPP) and orange peel nonpolar fraction (OPNP) on trimethylamine (TMA) and trimethylamine N-oxide (TMAO) production in response to l-carnitine treatment in vivo and in vitro. Metabolomics is used to identify bioactive compounds. The research demonstrates that the OPP effectively regulates atherosclerosis-related markers, TMA and TMAO in plasma and urine, compared to the OPNP. Our investigation reveals that these inhibitory effects are independent of changes in gut microbiota composition. The effects are attributed to the modulation of cntA/B enzyme activity and FMO3 mRNA expression in vitro. Moreover, OPP exhibits stronger inhibitory effects on TMA production than OPNP, potentially due to its higher content of feruloylputrescine, which displays the highest inhibitory activity on the cntA/B enzyme and TMA production. These findings suggest that the OPP containing feruloylputrescine has the potential to alleviate cardiovascular diseases by modulating cntA/B and FMO3 enzymes without directly influencing gut microbiota composition

    Altered Hepatic Gene Expression Profiles Associated with Improved Fatty Liver, Insulin Resistance, and Intestinal Permeability after Hydroxypropyl Methylcellulose (HPMC) Supplementation in Diet-Induced Obese Mice

    No full text
    The effect of hydroxypropyl methylcellulose (HPMC) on hepatic gene expression was analyzed by exon microarray and real-time PCR from livers of diet-induced obese (DIO) mice fed a high-fat (HF) diet supplemented with either 6% HPMC or 6% microcrystalline cellulose (MCC). HPMC-fed mice exhibited significantly reduced body weight gain (55% lower compared to MCC), liver weight (13%), plasma LDL-cholesterol concentration (45%), and HF diet-increased intestinal permeability (48%). HPMC significantly reduced areas under the curve for 2 h insulin and glucose responses, indicating enhanced insulin sensitivity and glucose metabolism. HPMC up-regulated hepatic genes related to fatty acid oxidation, cholesterol and bile acid synthesis, and cellular activation of glucocorticoid (bile acid recycling) and down-regulated genes related to oxidative stress, triglyceride synthesis, and polyunsaturated fatty acid elongation. In conclusion, HPMC consumption ameliorates the effects of a HF diet on intestinal permeability, insulin resistance, hepatic lipid accumulation, glucocorticoid-related bile acid recycling, oxidative stress, and weight gain in DIO mice

    Proposed mechanisms by which flavonoid-rich Chardonnay grape seed flour (ChrSd) ameliorates high-fat (HF) diet-induced insulin resistance, hepatic steatosis, and nonalcoholic fatty liver disease (NAFLD).

    No full text
    <p>Supplementation with ChrSd lowers HF-induced insulin resistance and hepatic steatosis and enhances leptin sensitivity, followed by lowered oxidative stress and inflammation via reduction of ROS and ceramide synthesis. The result is possible amelioration of HF-induced progression of NAFLD. ROS, reactive oxygen species.</p

    Insulin tolerance in obese mice fed a high-fat (HF) diet supplemented with either 5% microcrystalline cellulose (MCC, control) or 10% (w/w) Chardonnay grape seed flour (ChrSd) for 5 weeks.

    No full text
    <p>(A) Insulin tolerance tests (ITTs) were performed in the fasting state. (B) Area under the curve (AUC) values. Data are expressed as mean ± SE. <i>n</i> = 8–9/group. *<i>P <</i> 0.05.</p

    Body and adipose tissue weights and energy intake in DIO mice fed MCC and ChrSd for 5 wk<sup>1</sup>.

    No full text
    <p>Body and adipose tissue weights and energy intake in DIO mice fed MCC and ChrSd for 5 wk<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0167680#t003fn001" target="_blank"><sup>1</sup></a>.</p
    corecore