36 research outputs found

    Artificial escape from XCI by DNA methylation editing of the CDKL5 gene.

    Get PDF
    A significant number of X-linked genes escape from X chromosome inactivation and are associated with a distinct epigenetic signature. One epigenetic modification that strongly correlates with X-escape is reduced DNA methylation in promoter regions. Here, we created an artificial escape by editing DNA methylation on the promoter of CDKL5, a gene causative for an infantile epilepsy, from the silenced X-chromosomal allele in human neuronal-like cells. We identify that a fusion of the catalytic domain of TET1 to dCas9 targeted to the CDKL5 promoter using three guide RNAs causes significant reactivation of the inactive allele in combination with removal of methyl groups from CpG dinucleotides. Strikingly, we demonstrate that co-expression of TET1 and a VP64 transactivator have a synergistic effect on the reactivation of the inactive allele to levels >60% of the active allele. We further used a multi-omics assessment to determine potential off-targets on the transcriptome and methylome. We find that synergistic delivery of dCas9 effectors is highly selective for the target site. Our findings further elucidate a causal role for reduced DNA methylation associated with escape from X chromosome inactivation. Understanding the epigenetics associated with escape from X chromosome inactivation has potential for those suffering from X-linked disorders

    Production and Initial Characterization of Dad1p, a Component of the Dam1-DASH Kinetochore Complex

    Get PDF
    In all dividing eukaryotic cells, the mitotic spindle (composed primarily of microtubules) must interact with chromosomes through a complex protein assembly called the kinetochore. In Saccharomyces cerevisiae, the Dam1-DASH complex plays an important role in promoting attachment between the kinetochore and the mitotic spindle. It also actively participates in the physical separation of sister chromatids in anaphase. Understanding the biochemical mechanisms used by Dam1-DASH has been facilitated by bacterial co-expression of the ten Dam1-DASH genes, which results in the production of a heterodecameric protein complex that can be studied in vitro. However, individual protein subunits are not soluble when expressed in E. coli, thus precluding analysis of the nature of the interaction between subunits and an examination of the assembly of the functional complex. In this paper, we describe the expression, solubilization, purification and refolding of Dad1p, one of the Dam1-DASH complex subunits. In addition, we show that Dad1p, when isolated in this manner forms dimers and/or tetramers, dependent upon protein concentration. This work provides an important tool for studying the Dam1-DASH complex that was previously unavailable, and provides an avenue of investigation for understanding how the individual heterodecamers associate with each other to facilitate chromosome segregation

    Leveraging Data Visualization and a Statewide Health Information Exchange to Support COVID-19 Surveillance and Response: Application of Public Health Informatics

    Get PDF
    Objective We sought to support public health surveillance and response to coronavirus disease 2019 (COVID-19) through rapid development and implementation of novel visualization applications for data amalgamated across sectors. Materials and Methods We developed and implemented population-level dashboards that collate information on individuals tested for and infected with COVID-19, in partnership with state and local public health agencies as well as health systems. The dashboards are deployed on top of a statewide health information exchange. One dashboard enables authorized users working in public health agencies to surveil populations in detail, and a public version provides higher-level situational awareness to inform ongoing pandemic response efforts in communities. Results Both dashboards have proved useful informatics resources. For example, the private dashboard enabled detection of a local community outbreak associated with a meat packing plant. The public dashboard provides recent trend analysis to track disease spread and community-level hospitalizations. Combined, the tools were utilized 133 637 times by 74 317 distinct users between June 21 and August 22, 2020. The tools are frequently cited by journalists and featured on social media. Discussion Capitalizing on a statewide health information exchange, in partnership with health system and public health leaders, Regenstrief biomedical informatics experts rapidly developed and deployed informatics tools to support surveillance and response to COVID-19. Conclusions The application of public health informatics methods and tools in Indiana holds promise for other states and nations. Yet, development of infrastructure and partnerships will require effort and investment after the current pandemic in preparation for the next public health emergency

    Urinary Epidermal Growth Factor as a Marker of Disease Progression in Children With Nephrotic Syndrome.

    Get PDF
    Introduction: Childhood-onset nephrotic syndrome has a variable clinical course. Improved predictive markers of long-term outcomes in children with nephrotic syndrome are needed. This study tests the association between baseline urinary epidermal growth factor (uEGF) excretion and longitudinal kidney function in children with nephrotic syndrome. Methods: The study evaluated 191 participants younger than 18 years enrolled in the Nephrotic Syndrome Study Network, including 118 with their first clinically indicated kidney biopsy (68 minimal change disease; 50 focal segmental glomerulosclerosis) and 73 with incident nephrotic syndrome without a biopsy. uEGF was measured at baseline for all participants and normalized by the urine creatinine (Cr) concentration. Renal epidermal growth factor (EGF) mRNA was measured in the tubular compartment microdissected from kidney biopsy cores from a subset of patients. Linear mixed models were used to test if baseline uEGF/Cr and EGF mRNA expression were associated with change in estimated glomerular filtration rate (eGFR) over time. Results: Higher uEGF/Cr at baseline was associated with slower eGFR decline during follow-up (median follow-up = 30 months). Halving of uEGF/Cr was associated with a decrease in eGFR slope of 2.0 ml/min per 1.73 m Conclusion: uEGF/Cr may be a useful noninvasive biomarker that can assist in predicting the long-term course of kidney function in children with incident nephrotic syndrome

    Genome-wide analyses reveal a potential role for the MAPT, MOBP, and APOE loci in sporadic frontotemporal dementia

    Get PDF
    Frontotemporal dementia (FTD) is the second most common cause of early-onset dementia after Alzheimer disease (AD). Efforts in the field mainly focus on familial forms of disease (fFTDs), while studies of the genetic etiology of sporadic FTD (sFTD) have been less common. In the current work, we analyzed 4,685 sFTD cases and 15,308 controls looking for common genetic determinants for sFTD. We found a cluster of variants at the MAPT (rs199443; p = 2.5 × 10−12, OR = 1.27) and APOE (rs6857; p = 1.31 × 10−12, OR = 1.27) loci and a candidate locus on chromosome 3 (rs1009966; p = 2.41 × 10−8, OR = 1.16) in the intergenic region between RPSA and MOBP, contributing to increased risk for sFTD through effects on expression and/or splicing in brain cortex of functionally relevant in-cis genes at the MAPT and RPSA-MOBP loci. The association with the MAPT (H1c clade) and RPSA-MOBP loci may suggest common genetic pleiotropy across FTD and progressive supranuclear palsy (PSP) (MAPT and RPSA-MOBP loci) and across FTD, AD, Parkinson disease (PD), and cortico-basal degeneration (CBD) (MAPT locus). Our data also suggest population specificity of the risk signals, with MAPT and APOE loci associations mainly driven by Central/Nordic and Mediterranean Europeans, respectively. This study lays the foundations for future work aimed at further characterizing population-specific features of potential FTD-discriminant APOE haplotype(s) and the functional involvement and contribution of the MAPT H1c haplotype and RPSA-MOBP loci to pathogenesis of sporadic forms of FTD in brain cortex

    Genome-wide analyses reveal a potential role for the MAPT, MOBP, and APOE loci in sporadic frontotemporal dementia

    Get PDF
    Frontotemporal dementia (FTD) is the second most common cause of early-onset dementia after Alzheimer disease (AD). Efforts in the field mainly focus on familial forms of disease (fFTDs), while studies of the genetic etiology of sporadic FTD (sFTD) have been less common. In the current work, we analyzed 4,685 sFTD cases and 15,308 controls looking for common genetic determinants for sFTD. We found a cluster of variants at the MAPT (rs199443; p = 2.5 × 10−12, OR = 1.27) and APOE (rs6857; p = 1.31 × 10−12, OR = 1.27) loci and a candidate locus on chromosome 3 (rs1009966; p = 2.41 × 10−8, OR = 1.16) in the intergenic region between RPSA and MOBP, contributing to increased risk for sFTD through effects on expression and/or splicing in brain cortex of functionally relevant in-cis genes at the MAPT and RPSA-MOBP loci. The association with the MAPT (H1c clade) and RPSA-MOBP loci may suggest common genetic pleiotropy across FTD and progressive supranuclear palsy (PSP) (MAPT and RPSA-MOBP loci) and across FTD, AD, Parkinson disease (PD), and cortico-basal degeneration (CBD) (MAPT locus). Our data also suggest population specificity of the risk signals, with MAPT and APOE loci associations mainly driven by Central/Nordic and Mediterranean Europeans, respectively. This study lays the foundations for future work aimed at further characterizing population-specific features of potential FTD-discriminant APOE haplotype(s) and the functional involvement and contribution of the MAPT H1c haplotype and RPSA-MOBP loci to pathogenesis of sporadic forms of FTD in brain cortex

    Pregnancy and neonatal outcomes of COVID-19: The PAN-COVID study

    Get PDF
    Objective To assess perinatal outcomes for pregnancies affected by suspected or confirmed SARS-CoV-2 infection. Methods Prospective, web-based registry. Pregnant women were invited to participate if they had suspected or confirmed SARS-CoV-2 infection between 1st January 2020 and 31st March 2021 to assess the impact of infection on maternal and perinatal outcomes including miscarriage, stillbirth, fetal growth restriction, pre-term birth and transmission to the infant. Results Between April 2020 and March 2021, the study recruited 8239 participants who had suspected or confirmed SARs-CoV-2 infection episodes in pregnancy between January 2020 and March 2021. Maternal death affected 14/8197 (0.2%) participants, 176/8187 (2.2%) of participants required ventilatory support. Pre-eclampsia affected 389/8189 (4.8%) participants, eclampsia was reported in 40/ 8024 (0.5%) of all participants. Stillbirth affected 35/8187 (0.4 %) participants. In participants delivering within 2 weeks of delivery 21/2686 (0.8 %) were affected by stillbirth compared with 8/4596 (0.2 %) delivering ≥ 2 weeks after infection (95 % CI 0.3–1.0). SGA affected 744/7696 (9.3 %) of livebirths, FGR affected 360/8175 (4.4 %) of all pregnancies. Pre-term birth occurred in 922/8066 (11.5%), the majority of these were indicated pre-term births, 220/7987 (2.8%) participants experienced spontaneous pre-term births. Early neonatal deaths affected 11/8050 livebirths. Of all neonates, 80/7993 (1.0%) tested positive for SARS-CoV-2. Conclusions Infection was associated with indicated pre-term birth, most commonly for fetal compromise. The overall proportions of women affected by SGA and FGR were not higher than expected, however there was the proportion affected by stillbirth in participants delivering within 2 weeks of infection was significantly higher than those delivering ≥ 2 weeks after infection. We suggest that clinicians’ threshold for delivery should be low if there are concerns with fetal movements or fetal heart rate monitoring in the time around infection

    Mortality from gastrointestinal congenital anomalies at 264 hospitals in 74 low-income, middle-income, and high-income countries: a multicentre, international, prospective cohort study

    Get PDF
    Summary Background Congenital anomalies are the fifth leading cause of mortality in children younger than 5 years globally. Many gastrointestinal congenital anomalies are fatal without timely access to neonatal surgical care, but few studies have been done on these conditions in low-income and middle-income countries (LMICs). We compared outcomes of the seven most common gastrointestinal congenital anomalies in low-income, middle-income, and high-income countries globally, and identified factors associated with mortality. Methods We did a multicentre, international prospective cohort study of patients younger than 16 years, presenting to hospital for the first time with oesophageal atresia, congenital diaphragmatic hernia, intestinal atresia, gastroschisis, exomphalos, anorectal malformation, and Hirschsprung’s disease. Recruitment was of consecutive patients for a minimum of 1 month between October, 2018, and April, 2019. We collected data on patient demographics, clinical status, interventions, and outcomes using the REDCap platform. Patients were followed up for 30 days after primary intervention, or 30 days after admission if they did not receive an intervention. The primary outcome was all-cause, in-hospital mortality for all conditions combined and each condition individually, stratified by country income status. We did a complete case analysis. Findings We included 3849 patients with 3975 study conditions (560 with oesophageal atresia, 448 with congenital diaphragmatic hernia, 681 with intestinal atresia, 453 with gastroschisis, 325 with exomphalos, 991 with anorectal malformation, and 517 with Hirschsprung’s disease) from 264 hospitals (89 in high-income countries, 166 in middleincome countries, and nine in low-income countries) in 74 countries. Of the 3849 patients, 2231 (58·0%) were male. Median gestational age at birth was 38 weeks (IQR 36–39) and median bodyweight at presentation was 2·8 kg (2·3–3·3). Mortality among all patients was 37 (39·8%) of 93 in low-income countries, 583 (20·4%) of 2860 in middle-income countries, and 50 (5·6%) of 896 in high-income countries (p<0·0001 between all country income groups). Gastroschisis had the greatest difference in mortality between country income strata (nine [90·0%] of ten in lowincome countries, 97 [31·9%] of 304 in middle-income countries, and two [1·4%] of 139 in high-income countries; p≤0·0001 between all country income groups). Factors significantly associated with higher mortality for all patients combined included country income status (low-income vs high-income countries, risk ratio 2·78 [95% CI 1·88–4·11], p<0·0001; middle-income vs high-income countries, 2·11 [1·59–2·79], p<0·0001), sepsis at presentation (1·20 [1·04–1·40], p=0·016), higher American Society of Anesthesiologists (ASA) score at primary intervention (ASA 4–5 vs ASA 1–2, 1·82 [1·40–2·35], p<0·0001; ASA 3 vs ASA 1–2, 1·58, [1·30–1·92], p<0·0001]), surgical safety checklist not used (1·39 [1·02–1·90], p=0·035), and ventilation or parenteral nutrition unavailable when needed (ventilation 1·96, [1·41–2·71], p=0·0001; parenteral nutrition 1·35, [1·05–1·74], p=0·018). Administration of parenteral nutrition (0·61, [0·47–0·79], p=0·0002) and use of a peripherally inserted central catheter (0·65 [0·50–0·86], p=0·0024) or percutaneous central line (0·69 [0·48–1·00], p=0·049) were associated with lower mortality. Interpretation Unacceptable differences in mortality exist for gastrointestinal congenital anomalies between lowincome, middle-income, and high-income countries. Improving access to quality neonatal surgical care in LMICs will be vital to achieve Sustainable Development Goal 3.2 of ending preventable deaths in neonates and children younger than 5 years by 2030

    Cell-Based Delivery Approaches for DNA-Binding Domains to the Central Nervous System.

    No full text
    Advancements in programmable DNA-Binding Proteins (DBDs) that target the genome, such as zinc fingers, transcription activator-like effectors, and Cas9, have broadened drug target design beyond traditional protein substrates. Effective delivery methodologies remain a major barrier in targeting the central nervous system. Currently, adeno-associated virus is the most wellvalidated delivery system for the delivery of DBDs towards the central nervous with multiple, ongoing clinical trials. While effective in transducing neuronal cells, viral delivery systems for DBDs remain problematic due to inherent viral packaging limits or immune responses that hinder translational potential. Direct administration of DBDs or encapsulation in lipid nanoparticles may provide alternative means towards delivering gene therapies into the central nervous system. This review will evaluate the strengths and limitations of current DBD delivery strategies in vivo. Furthermore, this review will discuss the use of adult stem cells as a putative delivery vehicle for DBDs and the potential advantages that these systems have over previous methodologies
    corecore