31,743 research outputs found
Secondary cadmium-air batteries
Sponge cadmium electrodes for secondary cadmium-air batterie
Secondary iron-air batteries
Self discharge, capacity maintenance, oxidation, and water loss problems in secondary iron-air batterie
Gravitational spectra from direct measurements
A simple rapid method is described for determining the spectrum of a surface field from harmonic analysis of direct measurements along great circle arcs. The method is shown to give excellent overall trends to very high degree from even a few short arcs of satellite data. Three examples are taken with perfect measurements of satellite tracking over a planet made up of hundreds of point-masses using (1) altimetric heights from a low orbiting spacecraft, (2) velocity residuals between a low and a high satellite in circular orbits, and (3) range-rate data between a station at infinity and a satellite in highly eccentric orbit. In particular, the smoothed spectrum of the Earth's gravitational field is determined to about degree 400(50 km half wavelength) from 1 D x 1 D gravimetry and the equivalent of 11 revolutions of Geos 3 and Skylab altimetry. This measurement shows there is about 46 cm of geoid height remaining in the field beyond degree 180
Conjugate gradient solvers on Intel Xeon Phi and NVIDIA GPUs
Lattice Quantum Chromodynamics simulations typically spend most of the
runtime in inversions of the Fermion Matrix. This part is therefore frequently
optimized for various HPC architectures. Here we compare the performance of the
Intel Xeon Phi to current Kepler-based NVIDIA Tesla GPUs running a conjugate
gradient solver. By exposing more parallelism to the accelerator through
inverting multiple vectors at the same time, we obtain a performance greater
than 300 GFlop/s on both architectures. This more than doubles the performance
of the inversions. We also give a short overview of the Knights Corner
architecture, discuss some details of the implementation and the effort
required to obtain the achieved performance.Comment: 7 pages, proceedings, presented at 'GPU Computing in High Energy
Physics', September 10-12, 2014, Pisa, Ital
Numerical Investigation of Second Mode Attenuation over Carbon/Carbon Surfaces on a Sharp Slender Cone
We have carried out axisymmetric numerical simulations of a spatially
developing hypersonic boundary layer over a sharp 7-half-angle cone
at inspired by the experimental investigations by Wagner (2015).
Simulations are first performed with impermeable (or solid) walls with a
one-time broadband pulse excitation applied upstream to determine the most
convectively-amplified frequencies resulting in the range 260kHz -- 400kHz,
consistent with experimental observations of second-mode instability waves.
Subsequently, we introduce harmonic disturbances via continuous periodic
suction and blowing at 270kHz and 350kHz. For each of these forcing frequencies
complex impedance boundary conditions (IBC), modeling the acoustic response of
two different carbon/carbon (C/C) ultrasonically absorptive porous surfaces,
are applied at the wall. The IBCs are derived as an output of a pore-scale
aeroacoustic analysis -- the inverse Helmholtz Solver (iHS) -- which is able to
return the broadband real and imaginary components of the surface-averaged
impedance. The introduction of the IBCs in all cases leads to a significant
attenuation of the harmonically-forced second-mode wave. In particular, we
observe a higher attenuation rate of the introduced waves with frequency of
350kHz in comparison with 270kHz, and, along with the iHS impedance results, we
establish that the C/C surfaces absorb acoustic energy more effectively at
higher frequencies.Comment: AIAA-SciTech 201
Time transfer between the Goddard Optical Research Facility and the U.S. Naval Observatory using 100 picosecond laser pulses
A horizontal two-way time comparison link in air between the University of Maryland laser ranging and time transfer equipment at the Goddard Optical Research Facility (GORF) 1.2 m telescope and the Time Services Division of the U.S. Naval Observatory (USNO) was established. Flat mirrors of 25 cm and 30 cm diameter respectively were placed on top of the Washington Cathedral and on a water tower at the Beltsville Agricultural Research Center. Two optical corner reflectors at the USNO reflect the laser pulses back to the GORF. Light pulses of 100 ps duration and an energy of several hundred microjoules are sent at the rate of 10 pulses per second. The detection at the USNO is by means of an RCA C30902E avalanche photodiode and the timing is accomplished by an HP 5370A computing counter and an HP 1000 computer with respect to a 10 pps pulse train from the Master Clock
A Spectacular VHE Gamma-Ray Outburst from PKS 2155-304 in 2006
Since 2002 the VHE (>100 GeV) gamma-ray flux of the high-frequency peaked BL
Lac PKS 2155-304 has been monitored with the High Energy Stereoscopic System
(HESS). An extreme gamma-ray outburst was detected in the early hours of July
28, 2006 (MJD 53944). The average flux above 200 GeV observed during this
outburst is ~7 times the flux observed from the Crab Nebula above the same
threshold. Peak fluxes are measured with one-minute time scale resolution at
more than twice this average value. Variability is seen up to ~600 s in the
Fourier power spectrum, and well-resolved bursts varying on time scales of ~200
seconds are observed. There are no strong indications for spectral variability
within the data. Assuming the emission region has a size comparable to the
Schwarzschild radius of a ~10^9 solar mass black hole, Doppler factors greater
than 100 are required to accommodate the observed variability time scales.Comment: 4 pages, 3 figures; To appear in the Proceedings of the 30th ICRC
(Merida, Mexico
2015 Update on Acute Adverse Reactions to Gadolinium based Contrast Agents in Cardiovascular MR. Large Multi-National and Multi-Ethnical Population Experience With 37788 Patients From the EuroCMR Registry
Objectives: Specifically we aim to demonstrate that the results of our earlier safety data hold true in this much larger multi-national and multi-ethnical population. Background: We sought to re-evaluate the frequency, manifestations, and severity of acute adverse reactions associated with administration of several gadolinium- based contrast agents during routine CMR on a European level. Methods: Multi-centre, multi-national, and multi-ethnical registry with consecutive enrolment of patients in 57 European centres. Results: During the current observation 37788 doses of Gadolinium based contrast agent were administered to 37788 patients. The mean dose was 24.7 ml (range 5–80 ml), which is equivalent to 0.123 mmol/kg (range 0.01 - 0.3 mmol/kg). Forty-five acute adverse reactions due to contrast administration occurred (0.12 %). Most reactions were classified as mild (43 of 45) according to the American College of Radiology definition. The most frequent complaints following contrast administration were rashes and hives (15 of 45), followed by nausea (10 of 45) and flushes (10 of 45). The event rate ranged from 0.05 % (linear non-ionic agent gadodiamide) to 0.42 % (linear ionic agent gadobenate dimeglumine). Interestingly, we also found different event rates between the three main indications for CMR ranging from 0.05 % (risk stratification in suspected CAD) to 0.22 % (viability in known CAD). Conclusions: The current data indicate that the results of the earlier safety data hold true in this much larger multi-national and multi-ethnical population. Thus, the “off-label” use of Gadolinium based contrast in cardiovascular MR should be regarded as safe concerning the frequency, manifestation and severity of acute events
- …