1,212 research outputs found
Efficient Algorithms for Distributed Detection of Holes and Boundaries in Wireless Networks
We propose two novel algorithms for distributed and location-free boundary
recognition in wireless sensor networks. Both approaches enable a node to
decide autonomously whether it is a boundary node, based solely on connectivity
information of a small neighborhood. This makes our algorithms highly
applicable for dynamic networks where nodes can move or become inoperative.
We compare our algorithms qualitatively and quantitatively with several
previous approaches. In extensive simulations, we consider various models and
scenarios. Although our algorithms use less information than most other
approaches, they produce significantly better results. They are very robust
against variations in node degree and do not rely on simplified assumptions of
the communication model. Moreover, they are much easier to implement on real
sensor nodes than most existing approaches.Comment: extended version of accepted submission to SEA 201
Hierarchical Time-Dependent Oracles
We study networks obeying \emph{time-dependent} min-cost path metrics, and
present novel oracles for them which \emph{provably} achieve two unique
features: % (i) \emph{subquadratic} preprocessing time and space,
\emph{independent} of the metric's amount of disconcavity; % (ii)
\emph{sublinear} query time, in either the network size or the actual
Dijkstra-Rank of the query at hand
Dynamic Time-Dependent Route Planning in Road Networks with User Preferences
There has been tremendous progress in algorithmic methods for computing
driving directions on road networks. Most of that work focuses on
time-independent route planning, where it is assumed that the cost on each arc
is constant per query. In practice, the current traffic situation significantly
influences the travel time on large parts of the road network, and it changes
over the day. One can distinguish between traffic congestion that can be
predicted using historical traffic data, and congestion due to unpredictable
events, e.g., accidents. In this work, we study the \emph{dynamic and
time-dependent} route planning problem, which takes both prediction (based on
historical data) and live traffic into account. To this end, we propose a
practical algorithm that, while robust to user preferences, is able to
integrate global changes of the time-dependent metric~(e.g., due to traffic
updates or user restrictions) faster than previous approaches, while allowing
subsequent queries that enable interactive applications
- …
