1,212 research outputs found

    Efficient Algorithms for Distributed Detection of Holes and Boundaries in Wireless Networks

    Get PDF
    We propose two novel algorithms for distributed and location-free boundary recognition in wireless sensor networks. Both approaches enable a node to decide autonomously whether it is a boundary node, based solely on connectivity information of a small neighborhood. This makes our algorithms highly applicable for dynamic networks where nodes can move or become inoperative. We compare our algorithms qualitatively and quantitatively with several previous approaches. In extensive simulations, we consider various models and scenarios. Although our algorithms use less information than most other approaches, they produce significantly better results. They are very robust against variations in node degree and do not rely on simplified assumptions of the communication model. Moreover, they are much easier to implement on real sensor nodes than most existing approaches.Comment: extended version of accepted submission to SEA 201

    Hierarchical Time-Dependent Oracles

    Get PDF
    We study networks obeying \emph{time-dependent} min-cost path metrics, and present novel oracles for them which \emph{provably} achieve two unique features: % (i) \emph{subquadratic} preprocessing time and space, \emph{independent} of the metric's amount of disconcavity; % (ii) \emph{sublinear} query time, in either the network size or the actual Dijkstra-Rank of the query at hand

    Dynamic Time-Dependent Route Planning in Road Networks with User Preferences

    Full text link
    There has been tremendous progress in algorithmic methods for computing driving directions on road networks. Most of that work focuses on time-independent route planning, where it is assumed that the cost on each arc is constant per query. In practice, the current traffic situation significantly influences the travel time on large parts of the road network, and it changes over the day. One can distinguish between traffic congestion that can be predicted using historical traffic data, and congestion due to unpredictable events, e.g., accidents. In this work, we study the \emph{dynamic and time-dependent} route planning problem, which takes both prediction (based on historical data) and live traffic into account. To this end, we propose a practical algorithm that, while robust to user preferences, is able to integrate global changes of the time-dependent metric~(e.g., due to traffic updates or user restrictions) faster than previous approaches, while allowing subsequent queries that enable interactive applications
    corecore