744 research outputs found
Problems and hopes in nonsymmetric gravity
We consider the linearized nonsymmetric theory of gravitation (NGT) within
the background of an expanding universe and near a Schwarzschild mass. We show
that the theory always develops instabilities unless the linearized
nonsymmetric lagrangian reduces to a particular simple form. This form contains
a gauge invariant kinetic term, a mass term for the antisymmetric metric-field
and a coupling with the Ricci curvature scalar. This form cannot be obtained
within NGT. Based on the linearized lagrangian we know to be stable, we
consider the generation and evolution of quantum fluctuations of the
antisymmetric gravitational field (B-field) from inflation up to the present
day. We find that a B-field with a mass m ~ 0.03(H_I/10^(13)GeV)^4 eV is an
excellent dark matter candidate.Comment: 9 pages, 1 figure. Based on two talks by the authors at the 2nd
International Conference on Quantum Theories and Renormalization Group in
Gravity and Cosmology (IRGAC) 2006, Barcelon
Instabilities in the nonsymmetric theory of gravitation
We consider the linearized nonsymmetric theory of gravitation (NGT) within
the background of an expanding universe and near a Schwarzschild metric. We
show that the theory always develops instabilities unless the linearized
nonsymmetric lagrangian reduces to a particular simple form. This theory
contains a gauge invariant kinetic term, a mass term for the antisymmetric
metric-field and a coupling with the Ricci curvature scalar. This form cannot
be obtained within NGT. Next we discuss NGT beyond linearized level and
conjecture that the instabilities are not a relic of the linearization, but are
a general feature of the full theory. Finally we show that one cannot add
ad-hoc constraints to remove the instabilities as is possible with the
instabilities found in NGT by Clayton.Comment: 29 page
Seeding supermassive black holes with a nonvortical dark-matter subcomponent
Article / Letter to editorLeids Instituut Onderzoek Natuurkund
Detecting relic gravitational waves in the CMB: A statistical bias
Analyzing the imprint of relic gravitational waves (RGWs) on the cosmic
microwave background (CMB) power spectra provides a way to determine the signal
of RGWs. In this Letter, we discuss a statistical bias, which could exist in
the data analysis and has the tendency to overlook the RGWs. We also explain
why this bias exists, and how to avoid it.Comment: 4 pages, 1 figur
Vacuum properties of nonsymmetric gravity in de Sitter space
We consider quantum effects of a massive antisymmetric tensor field on the
dynamics of de Sitter space-time. Our starting point is the most general,
stable, linearized Lagrangian arising in nonsymmetric gravitational theories
(NGTs), where part of the antisymmetric field mass is generated by the
cosmological term. We construct a renormalization group (RG) improved effective
action by integrating out one loop vacuum fluctuations of the antisymmetric
tensor field and show that, in the limit when the RG scale goes to zero, the
Hubble parameter -- and thus the effective cosmological constant -- relaxes
rapidly to zero. We thus conclude that quantum loop effects in de Sitter space
can dramatically change the infrared sector of the on-shell gravity, making the
expansion rate insensitive to the original (bare) cosmological constant.Comment: 32 pages, 2 eps figure
Constraining Inflation
Slow roll reconstruction is derived from the Hamilton-Jacobi formulation of
inflationary dynamics. It automatically includes information from sub-leading
terms in slow roll, and facilitatesthe inclusion of priors based on the
duration on inflation. We show that at low inflationary scales the
Hamilton-Jacobi equations simplify considerably. We provide a new
classification scheme for inflationary models, based solely on the number of
parameters needed to specify the potential, and provide forecasts for likely
bounds on the slow roll parameters from future datasets. A minimal running of
the spectral index, induced solely by the first two slow roll parameters
(\epsilon and \eta) appears to be effectively undetectable by realistic Cosmic
Microwave Background experiments. However, we show that the ability to detect
this signal increases with the lever arm in comoving wavenumber, and we
conjecture that high redshift 21 cm data may allow tests of second order
consistency conditions on inflation. Finally, we point out that the second
order corrections to the spectral index are correlated with the inflationary
scale, and thus the amplitude of the CMB B-mode.Comment: 32 pages. v
From Wave Geometry to Fake Supergravity
The `Wave Geometry' equation of the pre-WWII Hiroshima program is also the
key equation of the current `fake supergravity' program. I review the status of
(fake) supersymmetric domain walls and (fake) pseudo-supersymmetric
cosmologies. An extension of the domain-wall/cosmology correspondence to a
triple correspondence with instantons shows that `pseudo-supersymmetry' has
another interpretation as Euclidean supersymmetry.Comment: 14 pages. Minor Revisions to original. To appear in proceedings of
the 5th International Symposium on Quantum Theory and Symmetries (QTS5),
Vallodolid, July 2007. in version
Testing the Void against Cosmological data: fitting CMB, BAO, SN and H0
In this paper, instead of invoking Dark Energy, we try and fit various
cosmological observations with a large Gpc scale under-dense region (Void)
which is modeled by a Lemaitre-Tolman-Bondi metric that at large distances
becomes a homogeneous FLRW metric. We improve on previous analyses by allowing
for nonzero overall curvature, accurately computing the distance to the
last-scattering surface and the observed scale of the Baryon Acoustic peaks,
and investigating important effects that could arise from having nontrivial
Void density profiles. We mainly focus on the WMAP 7-yr data (TT and TE),
Supernova data (SDSS SN), Hubble constant measurements (HST) and Baryon
Acoustic Oscillation data (SDSS and LRG). We find that the inclusion of a
nonzero overall curvature drastically improves the goodness of fit of the Void
model, bringing it very close to that of a homogeneous universe containing Dark
Energy, while by varying the profile one can increase the value of the local
Hubble parameter which has been a challenge for these models. We also try to
gauge how well our model can fit the large-scale-structure data, but a
comprehensive analysis will require the knowledge of perturbations on LTB
metrics. The model is consistent with the CMB dipole if the observer is about
15 Mpc off the centre of the Void. Remarkably, such an off-center position may
be able to account for the recent anomalous measurements of a large bulk flow
from kSZ data. Finally we provide several analytical approximations in
different regimes for the LTB metric, and a numerical module for CosmoMC, thus
allowing for a MCMC exploration of the full parameter space.Comment: 70 pages, 12 figures, matches version accepted for publication in
JCAP. References added, numerical values in tables changed due to minor bug,
conclusions unaltered. Numerical module available at
http://web.physik.rwth-aachen.de/download/valkenburg
Clinical characterization of 66 patients with congenital retinal disease due to the deep-intronic c.2991+1655A>G mutation in CEP290
Purpose: To describe the phenotypic spectrum of retinal disease caused by the c.2991+1655A>G mutation in CEP290 and to compare disease severity between homozygous and compound heterozygous patients.
Methods: Medical records were reviewed for best-corrected visual acuity (BCVA), age of onset, fundoscopy descriptions. Foveal outer nuclear layer (ONL) and ellipsoid zone (EZ) presence was assessed using spectral-domain optical coherence tomography (SD-OCT). Differences between compound heterozygous and homozygous patients were analyzed based on visual performance and visual development.
Results: A total of 66 patients were included. The majority of patients had either light perception or no light perception. In the remaining group of 14 patients, median BCVA was 20/195 Snellen (0.99 LogMAR; range 0.12-1.90) for the right eye, and 20/148 Snellen (0.87 LogMAR; range 0.22-1.90) for the left. Homozygous patients tended to be more likely to develop light perception compared to more severely affected compound heterozygous patients (P = 0.080) and are more likely to improve from no light perception to light perception (P = 0.022) before the age of 6 years. OCT data were available in 12 patients, 11 of whom had retained foveal ONL and EZ integrity up to 48 years (median 23 years) of age.
Conclusions: Homozygous patients seem less severely affected compared to their compound-heterozygous peers. Improvement of visual function may occur in the early years of life, suggesting a time window for therapeutic intervention up to the approximate age of 17 years. This period may be extended by an intact foveal ONL and EZ on OCT
Complete solutions to the metric of spherically collapsing dust in an expanding spacetime with a cosmological constant
We present semi-analytical solutions to the background equations describing
the Lema\^itre-Tolman-Bondi (LTB) metric as well as the homogeneous Friedmann
equations, in the presence of dust, curvature and a cosmological constant
Lambda. For none of the presented solutions any numerical integration has to be
performed. All presented solutions are given for expanding and collapsing
phases, preserving continuity in time and radius. Hence, these solutions
describe the complete space time of a collapsing spherical object in an
expanding universe. In the appendix we present for completeness a solution of
the Friedmann equations in the additional presence of radiation, only valid for
the Robertson-Walker metric.Comment: 23 pages, one figure. Numerical module for evaluation of the
solutions released at
http://web.physik.rwth-aachen.de/download/valkenburg/ColLambda/ Matches
published version, published under Open Access. Note change of titl
- …