2,299 research outputs found
Analysing I/O bottlenecks in LHC data analysis on grid storage resources
We describe recent I/O testing frameworks that we have developed and applied within the UK GridPP Collaboration, the ATLAS experiment and the DPM team, for a variety of distinct purposes. These include benchmarking vendor supplied storage products, discovering scaling limits of SRM solutions, tuning of storage systems for experiment data analysis, evaluating file access protocols, and exploring I/O read patterns of experiment software and their underlying event data models. With multiple grid sites now dealing with petabytes of data, such studies are becoming essential. We describe how the tests build, and improve, on previous work and contrast how the use-cases differ. We also detail the results obtained and the implications for storage hardware, middleware and experiment software
Hiding the complexity: building a distributed ATLAS Tier-2 with a single resource interface using ARC middleware
Since their inception, Grids for high energy physics have found management of data to be the most challenging aspect of operations. This problem has generally been tackled by the experiment's data management framework controlling in fine detail the distribution of data around the grid and the careful brokering of jobs to sites with co-located data. This approach, however, presents experiments with a difficult and complex system to manage as well as introducing a rigidity into the framework which is very far from the original conception of the grid.<p></p>
In this paper we describe how the ScotGrid distributed Tier-2, which has sites in Glasgow, Edinburgh and Durham, was presented to ATLAS as a single, unified resource using the ARC middleware stack. In this model the ScotGrid 'data store' is hosted at Glasgow and presented as a single ATLAS storage resource. As jobs are taken from the ATLAS PanDA framework, they are dispatched to the computing cluster with the fastest response time. An ARC compute element at each site then asynchronously stages the data from the data store into a local cache hosted at each site. The job is then launched in the batch system and accesses data locally.<p></p>
We discuss the merits of this system compared to other operational models and consider, from the point of view of the resource providers (sites), and from the resource consumers (experiments); and consider issues involved in transitions to this model
Tuning grid storage resources for LHC data analysis
Grid Storage Resource Management (SRM) and local file-system solutions are facing significant challenges to support efficient analysis of the data now being produced at the Large Hadron Collider (LHC). We compare the performance of different storage technologies at UK grid sites examining the effects of tuning and recent improvements in the I/O patterns of experiment software. Results are presented for both live production systems and technologies not currently in widespread use. Performance is studied using tests, including real LHC data analysis, which can be used to aid sites in deploying or optimising their storage configuration
Establishing Applicability of SSDs to LHC Tier-2 Hardware Configuration
Solid State Disk technologies are increasingly replacing high-speed hard
disks as the storage technology in high-random-I/O environments. There are
several potentially I/O bound services within the typical LHC Tier-2 - in the
back-end, with the trend towards many-core architectures continuing, worker
nodes running many single-threaded jobs and storage nodes delivering many
simultaneous files can both exhibit I/O limited efficiency. We estimate the
effectiveness of affordable SSDs in the context of worker nodes, on a large
Tier-2 production setup using both low level tools and real LHC I/O intensive
data analysis jobs comparing and contrasting with high performance spinning
disk based solutions. We consider the applicability of each solution in the
context of its price/performance metrics, with an eye on the pragmatic issues
facing Tier-2 provision and upgradesComment: 6 pages, 1 figure, 4 tables. Conference proceedings for CHEP201
Visibilities and the Politics of Space: Refugee Activism in Berlin
This article examines the ways in which refugee activists attained visibility within the public sphere while they contested, resisted, and helped transform multiple spaitials as part of their movement in Berlin, Germany. Scholarship on refugee and immigrant protests has focused on demonstrations and every day acts of resistance in refugee camps or accommodation. However, there has been less focus on the ways in which refugees engage in spatial politics. This article focuses on urban resistance in Berlin where refugee activists in alliance with supporters occupied several spaces and transformed them to political sites
The Future of High Energy Physics Software and Computing
Software and Computing (S&C) are essential to all High Energy Physics (HEP)
experiments and many theoretical studies. The size and complexity of S&C are
now commensurate with that of experimental instruments, playing a critical role
in experimental design, data acquisition/instrumental control, reconstruction,
and analysis. Furthermore, S&C often plays a leading role in driving the
precision of theoretical calculations and simulations. Within this central role
in HEP, S&C has been immensely successful over the last decade. This report
looks forward to the next decade and beyond, in the context of the 2021
Particle Physics Community Planning Exercise ("Snowmass") organized by the
Division of Particles and Fields (DPF) of the American Physical Society.Comment: Computational Frontier Report Contribution to Snowmass 2021; 41
pages, 1 figure. v2: missing ref and added missing topical group conveners.
v3: fixed typo
Measurement of the Branching Fraction for B- --> D0 K*-
We present a measurement of the branching fraction for the decay B- --> D0
K*- using a sample of approximately 86 million BBbar pairs collected by the
BaBar detector from e+e- collisions near the Y(4S) resonance. The D0 is
detected through its decays to K- pi+, K- pi+ pi0 and K- pi+ pi- pi+, and the
K*- through its decay to K0S pi-. We measure the branching fraction to be
B.F.(B- --> D0 K*-)= (6.3 +/- 0.7(stat.) +/- 0.5(syst.)) x 10^{-4}.Comment: 7 pages, 1 postscript figure, submitted to Phys. Rev. D (Rapid
Communications
A Study of Time-Dependent CP-Violating Asymmetries and Flavor Oscillations in Neutral B Decays at the Upsilon(4S)
We present a measurement of time-dependent CP-violating asymmetries in
neutral B meson decays collected with the BABAR detector at the PEP-II
asymmetric-energy B Factory at the Stanford Linear Accelerator Center. The data
sample consists of 29.7 recorded at the
resonance and 3.9 off-resonance. One of the neutral B mesons,
which are produced in pairs at the , is fully reconstructed in
the CP decay modes , , , () and , or in flavor-eigenstate
modes involving and (). The flavor of the other neutral B meson is tagged at the time of
its decay, mainly with the charge of identified leptons and kaons. The proper
time elapsed between the decays is determined by measuring the distance between
the decay vertices. A maximum-likelihood fit to this flavor eigenstate sample
finds . The value of the asymmetry amplitude is determined from
a simultaneous maximum-likelihood fit to the time-difference distribution of
the flavor-eigenstate sample and about 642 tagged decays in the
CP-eigenstate modes. We find , demonstrating that CP violation exists in the neutral B meson
system. (abridged)Comment: 58 pages, 35 figures, submitted to Physical Review
Evidence for the Rare Decay B -> K*ll and Measurement of the B -> Kll Branching Fraction
We present evidence for the flavor-changing neutral current decay and a measurement of the branching fraction for the related
process , where is either an or
pair. These decays are highly suppressed in the Standard Model,
and they are sensitive to contributions from new particles in the intermediate
state. The data sample comprises
decays collected with the Babar detector at the PEP-II storage ring.
Averaging over isospin and lepton flavor, we obtain the branching
fractions and , where the
uncertainties are statistical and systematic, respectively. The significance of
the signal is over , while for it is .Comment: 7 pages, 2 postscript figues, submitted to Phys. Rev. Let
- …