35,849 research outputs found
Examination of the physical processes associated with the keyhole region of variable polarity plasma arc welds in aluminum alloy 2219
The morphology and properties of the Variable Polarity Plasma Arc (VPPA) weld composite zone are intimately related to the physical processes associated with the keyhole. This study examined the effects of oxide, halide, and sulfate additions to the weld plate on the keyhole and the weld pool. Changes in both the arc plasma character and the bead morphology were correlated to the chemical environment of the weld. Pool behavior was observed by adding flow markers to actual VPPA welds. A low temperature analog to the welding process was developed. The results of the study indicate that oxygen, even at low partial pressures, can disrupt the stable keyhole and weld pool. The results also indicate that the Marangoni surface tension driven flows dominate the weld pool over the range of welding currents studied
Characterization of the corrosion resistance of several alloys to dilute biologically active solutions
Sulfate reducing bacteria and acid producing bacteria/fungi detected in hygiene waters increased the corrosion rate in aluminum alloy. Biologically active media enhanced the formation of pits on metal coupons. Direct observation of gas evolved at the corrosion sample, coupled with scanning electron microscopy (SEM) and energy dispersive x-ray analysis of the corrosion products indicates that the corrosion rate is increased because the presence of bacteria favor the reduction of hydrogen as the cathodic reaction through the reaction of oxygen and water. SEM verifies the presence of microbes in a biofilm on the surface of corroding samples. The bacterial consortia are associated with anodic sites on the metal surface, aggressive pitting occurs adjacent to biofilms. Many pits are associated with triple points and inclusions in the aluminum alloy microstructure. Similar bacterial colonization was found on the stainless steel samples. Fourier transform Infrared Spectroscopy confirmed the presence of carbonyl groups in pitted areas of samples exposed to biologically active waters
Characterization of the corrosion resistance of biologically active solutions: The effects of anodizing and welding
An understanding of fabrication processes, metallurgy, electrochemistry, and microbiology is crucial to the resolution of microbiologically influenced corrosion (MIC) problems. The object of this effort was to use AC impedance spectroscopy to characterize the corrosion resistance of Type II anodized aluminum alloy 2219-T87 in sterile and biologically active media and to examine the corrosion resistance of 316L, alloy 2219-T87, and titanium alloy 6-4 in the welded and unwelded conditions. The latter materials were immersed in sterile and biologically active media and corrosion currents were measured using the polarization resistance (DC) technique
The keyhole region in VPPA welds
The morphology and properties of the Variable Polarity Plasma Arc (VPPA) weld composite zone are intimately related to the physical processes associated with the keyhole. The effects of microsegregation and transient weld stress on macrosegregation in the weld tool are examined. In addition the electrical character of straight and reverse polarity portions of the arc cycle were characterized. The results of the former study indicate that alloy 2219 is weldable because large liquid volumes are available during latter stages of weld solidification. Strains in the pool region, acting in conjunction with weld microsegregation can produce macrosegregation great enough to produce radiographic contrast effects in welds. Mechanisms of surface copper enrichment were identified. The latter study has demonstrated that increased heat is delivered to workpieces if the reverse polarity proportion of the weld cycle is increased. Current in the straight polarity portion of the welding cycle increased as the reverse cycle proportion increased. Voltage during reverse polarity segments is large
EMU and the ECB
Monetary unions - European Union countries ; European Central Bank ; European Economic Community
Abnormal oscillation modes in a waning light bridge
A sunspot acts as a waveguide in response to the dynamics of the solar
interior; the trapped waves and oscillations could reveal its thermal and
magnetic structures.
We study the oscillations in a sunspot intruded by a light bridge, the
details of the oscillations could reveal the fine structure of the magnetic
topology.
We use the Solar Dynamics Observatory/Atmospheric Imaging Assembly data to
analyse the oscillations in the emission intensity of light bridge plasma at
different temperatures and investigate their spatial distributions.
The extreme ultraviolet emission intensity exhibits two persistent
oscillations at five-minute and sub-minute ranges. The spatial distribution of
the five-minute oscillation follows the spine of the bridge; whereas the
sub-minute oscillations overlap with two flanks of the bridge. Moreover, the
sub-minute oscillations are highly correlated in spatial domain, however, the
oscillations at the eastern and western flanks are asymmetric with regard to
the lag time. In the meanwhile, jet-like activities are only found at the
eastern flank.
Asymmetries in forms of oscillatory pattern and jet-like activities
\textbf{are} found between two flanks of a granular light bridge. Based on our
study and recent findings, we propose a new model of twisted magnetic field for
a light bridge and its dynamic interactions with the magnetic field of a
sunspot.Comment: 5 figures, Accepted version in A&
Characterization of coal products from high temperature processing of Usibelli low-rank coals
This research project was conducted in association with Gilbert/Commonwealth
Inc. as part of an overall techno-economic assessment of high temperature drying of low-rank coals. This report discusses the characteristics of the dried/pyrolyzed products of two high temperature, evaporative processes and the dried product from a hydrothermal process. The long term goal of this and other coal drying studies conducted at MIRL, was to define drying technologies that have significant and real potential to competitively move Alaska's, low-rank coals (LRCs) into the export, steam coal market of the Pacific Rim. In 1990, Japan imported 33 million metric tons (mt) of steam coal with an additional 39 million mt imported by other Far East nations(2). Australia dominates the export steam coal market to these Pacific Rim countries and exported 48 million mt in 1990 and an additional 61 million mt of metallurgical coal(2). The worldwide steam coal export market has been expanding rapidly, from 20
million mt in 1973 to 150 million mt in 1989, and is expected to double to nearly 300
million mt by the end of the century(3). Could Alaska capture only 3% of the projected
new world steam coal market, which is not an unreasonable expectation, the value of the
state's coal exports would soar from nominally 100 million per year. However, without development of economical methods for drying/stabilizing Alaskan LRCs, the only increase in export of Alaskan coals may be from the few "higher rank" coals within a "reasonable" transport range of the existing Alaska rail system or tidewater. Presently the coal from the Usibelli Coal Mine is the only low-rank coal exported internationally as a steam coal; primarily for its blending properties with other coal to improve combustion. But for Alaskan low-rank coals to truly stand on their own merits, economical drying processes must be developed that produce a physically and chemically stable dried product. The technologies that have the most potential for increasing the use of Alaskan coals
are those that can reduce the moisture content of these coals economically, and produce a fuel that is accepted in the international market place. Drying technologies will no doubt differ, depending on the end use of the fuel; be it dried lump coal, briquettes or pellets for pulverized coal or stoker applications, or concentrated coal-water fuels made from hot water dried LRCs. There are a number of developing processes that may work with Alaskan coals. Some drying processes, however, have been plagued by the production of excessive amounts of coal fines, Since the demand for Alaskan coal is currently limited to lump size coal, large quantities of fines are a definite liability. In this study, two high temperature drying/pyrolysis processes and one hydrothermal process were investigated. The high temperature drying/pyrolysis processes were conducted at (1) the Western Research Institute, (WRI) an affiliate of the University of Wyoming Research Corporation, Laramie, WY, and (2) Coal Technology Corporation (CTC) of Brisol, VA. Hydrothermal processing was conducted at MIRL, University of Alaska Fairbanks. A summary of these processes and the products they produced follows.The University of Alaska also provided matching funds for this project, which was a portion of a larger study that leveraged U.S. Department of Energy funds
Rotor blade aerodynamic design
Aerodynamic performance aspects of rotor blade design are presented. Design considerations, aerodynamic constraints and design variables are described
Flight evaluation of a hydromechanical backup control for the digital electronic engine control system in an F100 engine
The backup control (BUC) features, the operation of the BUC system, the BUC control logic, and the BUC flight test results are described. The flight test results include: (1) transfers to the BUC at military and maximum power settings; (2) a military power acceleration showing comparisons bvetween flight and simulation for BUC and primary modes; (3) steady-state idle power showing idle compressor speeds at different flight conditions; and (4) idle-to-military power BUC transients showing where cpmpressor stalls occurred for different ramp rates and idle speeds. All the BUC transfers which occur during the DEEC flight program are initiated by the pilot. Automatic transfers to the BUC do not occur
- …