196,568 research outputs found

    Melting relations and elemental distribution of portion of the system Fe-S-Si-O to 32 KB with planetary application

    Get PDF
    The melting relations and distribution of K and Cs in portions of the system was determined at high pressures. Ferrosilite is stable as a primary phase at high pressures because of the incongruent melting of ferrosilite to quartz plus liquid and the boundary between the one and two liquid fields on the joint Fe(1-x) O-FeS-SiO2 shifts away from silica with increasing pressures. Potassium K was found to have limited solubility in metal sulfide liquids at pressures up to 45 kb. The speculation that K may dissolve significantly in metal-metal sulfide liquids after undergoing first order isomorphic transition was tested by determining the distribution of Cs between sulfide and silicate liquids as an analogy to K. At 45 kb, 1400 C and 27 kb, 1300 C only limited amounts of Cs were detected in quench sulfide liquids even at pressures beyond the isomorphic transition of Cs

    Center motions of nonoverlapping condensates coupled by long-range dipolar interaction in bilayer and multilayer stacks

    Full text link
    We investigate the effect of anisotropic and long-range dipole-dipole interaction (DDI) on the center motions of nonoverlapping Bose-Einstein condensates (BEC) in bilayer and multilayer stacks. In the bilayer, it is shown analytically that while DDI plays no role in the in-phase modes of center motions of condensates, out-of-phase mode frequency (ωo\omega_o) depends crucially on the strength of DDI (ada_d). At the small-ada_d limit, ωo2(ad)ωo2(0)ad\omega_o^2(a_d)-\omega_o^2(0)\propto a_d. In the multilayer stack, transverse modes associated with center motions of coupled condensates are found to be optical phonon like. At the long-wavelength limit, phonon velocity is proportional to ad\sqrt a_d.Comment: 7 pages, 5 figure

    X-rays from the Eclipsing Millisecond Pulsar PSR J1740-5340 in the Globular Cluster NGC 6397

    Full text link
    The millisecond pulsar PSR J1740-5340 in the globular cluster NGC 6397 shows radio eclipses over ~40% of its binary orbit. A first Chandra observation revealed indications for the X-ray flux being orbit dependent as well. In this work we analysed five data sets of archival Chandra data taken between 2000 and 2007 in order to investigate the emission across the pulsar's binary orbit. Utilizing archival Chandra observations of PSR J1740-5340, we have performed a systematic timing and spectral analysis of this binary system. Using a chi-square-test the significance for intra-binary orbital modulation is found to be between 88.5% and 99.6%, depending on the number of phase bins used to construct the light curve. Applying the unbiased statistical Kolmogorov-Smirnov (KS) test did not indicate any significant intra-binary orbital modulation, though. However, comparing the counting rates observed at different epochs a flux variability on times scales of days to years is indicated. The possible origin of the X-ray emission is discussed in a number of different scenarios.Comment: 5 pages, 4 figures. Accepted for publication in Astronomy and Astrophysic

    Dielectric behavior of oblate spheroidal particles: Application to erythrocytes suspensions

    Full text link
    We have investigated the effect of particle shape on the eletrorotation (ER) spectrum of living cells suspensions. In particular, we consider coated oblate spheroidal particles and present a theoretical study of ER based on the spectral representation theory. Analytic expressions for the characteristic frequency as well as the dispersion strength can be obtained, thus simplifying the fitting of experimental data on oblate spheroidal cells that abound in the literature. From the theoretical analysis, we find that the cell shape, coating as well as material parameters can change the ER spectrum. We demonstrate good agreement between our theoretical predictions and experimental data on human erthrocytes suspensions.Comment: RevTex; 5 eps figure

    N K Pi molecular state with I=1 and J(Pi)=3/2-

    Full text link
    The structure of the molecule-like state of NKπNK\pi with spin-parity Jπ=3/2J^{\pi}={3/2}^- and isospin I=1 is studied within the chiral SU(3) quark model. First we calculate the NKNK, NπN\pi, and KπK\pi phase shifts in the framework of the resonating group method (RGM), and a qualitative agreement with the experimental data is obtained. Then we perform a rough estimation for the energy of (NKπ)Jπ=3/2,I=1(NK\pi)_{J^{\pi}={3/2}^-,I=1}, and the effect of the mixing to the configuration (ΔK)Jπ=3/2,I=1(\Delta K)_{J^{\pi}={3/2}^-,I=1} is also considered. The calculated energy is very close to the threshold of the NKπNK\pi system. A detailed investigation is worth doing in the further study.Comment: 11 pages, 3 figures; accepted for publication in Phys. Rev.

    Analogues of Auslander–Yorke theorems for multi-sensitivity

    No full text
    corecore