109 research outputs found

    Wireless Heterogeneous Networks and Next Generation Internet

    Get PDF
    The recent advances in wireless access technologies as well as the increasing number of mobile applications have made Wireless Internet a reality. A wide variety of bandwidth demanding services including high speed data delivery and multimedia communication have been materialized through the convergence of the next generation Internet and heterogeneous wireless networks. However, providing even higher bandwidth and richer applications necessitates a fundamental understanding of wireless Internet architecture and the interactions between heterogeneous users. Consequently, fundamental advances in many concepts of the wireless Internet are required for the ultimate goal of communication anytime anywhere. This special issue of the ACM Mobile Networks and Applications Journal is dedicated to the recent advances in the area of Wireless Internet. We accepted 10 papers out of 59 submissions from all over the world with a 17% acceptance rate. Papers describing management schemes, protocols, models, evaluation methods, and experimental studies of Wireless Internet are included in this special issue to provide a broad view of recent advances in this field

    'Behind Enemy Lines' Menzies, Evatt and Passports for Peking

    Get PDF
    This article focuses primarily on Australian government responses to the 1952 Peace Conference for Asia and the Pacific Regions. Because the conference was to be held in Peking, it was the subject of immense controversy: Chinese communists were fighting Australian soldiers in Korea and Australian peace activists, most communist or 'fellow travellers', sought to travel behind the 'bamboo curtain'. In this context, the Menzies government's policies on passports were sharply silhouetted. Although this conference has been overlooked in the literature, we can infer from the trajectory of relevant Cold War historiography that Prime Minister Menzies would adopt restrictive, even draconian, policies. This article argues otherwise. It suggests that it was that consistent champion of civil liberties, former deputy prime minister, attorney-general and secretary of the General Assembly of the United Nations and now, in 1952, Leader of the Opposition, Dr Evatt, who favoured more repressive action towards prospective delegates. In contrast, Menzies and his Cabinet were more lenient and shifted towards a harsher policy belatedly and reluctantly. This episode, therefore, challenges some comfortable assumptions about how the early Cold War was fought in Australia

    Applications of Cognitive Radio Networks

    Get PDF
    The term cognitive radio (CR), originally coined in the late 1990s, envisaged a radio that is aware of its operational environment so that it can dynamically and autonomously adjust its radio-operating parameters to accordingly adapt to the different situations. Cognition is achieved through the so-called cognitive cycle, consisting of the observation of the environment, the orientation and planning that leads to making appropriate decisions in accordance with specific operation goals, and finally, the execution of these decisions (e.g., access to the appropriate channel). Decisions can be reinforced by learning procedures based on the past observations and the corresponding results of prior actuations

    A Channel Model for Wireless Underground Sensor Networks Using Lateral Waves

    Get PDF
    Wireless Underground Sensor Networks (WUSNs) are an emerging type of wireless sensor networks (WSNs), where sensor nodes are located under the ground and communicate through soil. The major challenge in the development of efficient communication protocols for WUSNs is the characterization of the underground channel. So far, none of the existing models fully capture all the components of electromagnetic signal propagation in the soil medium. In this paper, three major components that influence underground communication are identified: direct, reflected, and lateral waves, where the latter has not been analyzed for WUSNs so far. Accordingly, a closed-form three-wave (3W) channel model is developed based on EM propagation principles of signals through soil. The 3W channel model is shown to agree well with both underground testbed experiments and EM analysis based on Maxwell’s equations, which cannot be represented in closed-form

    Impacts of Soil Type and Moisture on the Capacity of Multi-Carrier Modulation in Internet of Underground Things

    Get PDF
    Unique interactions between soil and communication components in wireless underground communications necessitate revisiting fundamental communication concepts from a different perspective. In this paper, capacity profile of wireless underground (UG) channel for multi-carrier transmission techniques is analyzed based on empirical antenna return loss and channel frequency response models in different soil types and moisture values. It is shown that data rates in excess of 124 Mbps are possible for distances up to 12 m. For shorter distances and lower soil moisture conditions, data rates of 362 Mbps can be achieved. It is also shown that due to soil moisture variations, UG channel experiences significant variations in antenna bandwidth and coherence bandwidth, which demands dynamic subcarrier operation. Theoretical analysis based on this empirical data show that by adaption to soil moisture variations, 180% improvement in channel capacity is possible when soil moisture decreases. It is shown that compared to a fixed bandwidth system; soilbased, system and sub-carrier bandwidth adaptation leads to capacity gains of 56%-136%. The analysis is based on indoor and outdoor experiments with more than 1; 500 measurements taken over a period of 10 months. These semi-empirical capacity results provide further evidence on the potential of underground channel as a viable media for high data rate communication and highlight potential improvements in this area

    Environment Aware Connectivity for Wireless Underground Sensor Networks

    Get PDF
    Wireless underground sensor networks (WUSNs) consist of sensors that are buried in and communicate through soil. The channel quality of WUSNs is strongly impacted by environmental parameters such soil moisture. Thus, the communication range of the nodes and the network connectivity vary over time. To address the challenges in underground communication, above ground nodes are deployed to maintain connectivity. In this paper, the connectivity of WUSNs under varying environmental conditions is captured by modeling the cluster size distribution under sub-critical conditions and through a novel aboveground communication coverage model for underground clusters. The resulting connectivity model is utilized to analyze two communication schemes: transmit power control and environmentaware routing, which maintain connectivity while reducing energy consumption. It is shown that transmit power control can maintain network connectivity under all soil moisture values at the cost of energy consumption. Utilizing relays based on soil moisture levels can decrease this energy consumption. A composite of both approaches is also considered to analyze the tradeoff between connectivity and energy consumption

    Environment Aware Connectivity for Wireless Underground Sensor Networks

    Get PDF
    Wireless underground sensor networks (WUSNs) consist of sensors that are buried in and communicate through soil. The channel quality of WUSNs is strongly impacted by environmental parameters such soil moisture. Thus, the communication range of the nodes and the network connectivity vary over time. To address the challenges in underground communication, above ground nodes are deployed to maintain connectivity. In this paper, the connectivity of WUSNs under varying environmental conditions is captured by modeling the cluster size distribution under sub-critical conditions and through a novel aboveground communication coverage model for underground clusters. The resulting connectivity model is utilized to analyze two communication schemes: transmit power control and environmentaware routing, which maintain connectivity while reducing energy consumption. It is shown that transmit power control can maintain network connectivity under all soil moisture values at the cost of energy consumption. Utilizing relays based on soil moisture levels can decrease this energy consumption. A composite of both approaches is also considered to analyze the tradeoff between connectivity and energy consumption

    Impacts of Soil Type and Moisture on the Capacity of Multi-Carrier Modulation in Internet of Underground Things

    Get PDF
    Unique interactions between soil and communication components in wireless underground communications necessitate revisiting fundamental communication concepts from a different perspective. In this paper, capacity profile of wireless underground (UG) channel for multi-carrier transmission techniques is analyzed based on empirical antenna return loss and channel frequency response models in different soil types and moisture values. It is shown that data rates in excess of 124 Mbps are possible for distances up to 12 m. For shorter distances and lower soil moisture conditions, data rates of 362 Mbps can be achieved. It is also shown that due to soil moisture variations, UG channel experiences significant variations in antenna bandwidth and coherence bandwidth, which demands dynamic subcarrier operation. Theoretical analysis based on this empirical data show that by adaption to soil moisture variations, 180% improvement in channel capacity is possible when soil moisture decreases. It is shown that compared to a fixed bandwidth system; soilbased, system and sub-carrier bandwidth adaptation leads to capacity gains of 56%-136%. The analysis is based on indoor and outdoor experiments with more than 1; 500 measurements taken over a period of 10 months. These semi-empirical capacity results provide further evidence on the potential of underground channel as a viable media for high data rate communication and highlight potential improvements in this area

    A Channel Model for Wireless Underground Sensor Networks Using Lateral Waves

    Get PDF
    Wireless Underground Sensor Networks (WUSNs) are an emerging type of wireless sensor networks (WSNs), where sensor nodes are located under the ground and communicate through soil. The major challenge in the development of efficient communication protocols for WUSNs is the characterization of the underground channel. So far, none of the existing models fully capture all the components of electromagnetic signal propagation in the soil medium. In this paper, three major components that influence underground communication are identified: direct, reflected, and lateral waves, where the latter has not been analyzed for WUSNs so far. Accordingly, a closed-form three-wave (3W) channel model is developed based on EM propagation principles of signals through soil. The 3W channel model is shown to agree well with both underground testbed experiments and EM analysis based on Maxwell’s equations, which cannot be represented in closed-form
    • …
    corecore