85 research outputs found

    Mode competition in superradiant scattering of matter waves

    Full text link
    Superradiant Rayleigh scattering in a Bose gas released from an optical lattice is analyzed with incident light pumping at the Bragg angle for resonant light diffraction. We show competition between superradiance scattering into the Bragg mode and into end-fire modes clearly leads to suppression of the latter at even relatively low lattice depths. A quantum light-matter interaction model is proposed for qualitatively explaining this result.Comment: 6 pages, 6 figures, accepted by PR

    Ion Imaging via Long-Range Interaction with Rydberg Atoms

    Full text link
    We demonstrate imaging of ions in an atomic gas with ion-Rydberg atom interaction induced absorption. This is made possible by utilizing a multi-photon electromagnetically induced transparency (EIT) scheme and the extremely large electric polarizability of a Rydberg state with high orbital angular momentum. We process the acquired images to obtain the distribution of ion clouds and to spectroscopically investigate the effect of the ions on the EIT resonance. Furthermore, we show that our method can be employed to image the dynamics of ions in a time resolved way. As an example, we map out the avalanche ionization of a gas of Rydberg atoms. The minimal disruption and the flexibility offered by this imaging technique make it ideally suited for the investigation of cold hybrid ion-atom systems.Comment: 6 pages, 4 figure

    Efficient microwave-to-optical conversion using Rydberg atoms

    Full text link
    We demonstrate microwave-to-optical conversion using six-wave mixing in 87^{87}Rb atoms where the microwave field couples to two atomic Rydberg states, and propagates collinearly with the converted optical field. We achieve a photon conversion efficiency of ~5% in the linear regime of the converter. In addition, we theoretically investigate all-resonant six-wave mixing and outline a realistic experimental scheme for reaching efficiencies greater than 60%

    Exploring multi-band excitations of interacting Bose gases in a 1D optical lattice by coherent scattering

    Full text link
    We use a coherent Bragg diffraction method to impart an external momentum to ultracold bosonic atoms trapped in a one-dimensional optical lattice. This method is based on the application of a single light pulse, with conditions where scattering of photons can be resonantly amplified by the atomic density grating. An oscillatory behavior of the momentum distribution resulting from the time evolution in the lattice potential is then observed. By measuring the oscillating frequencies, we extract multi-band energy structures of single-particle excitations with zero pseudo-momentum transfer for a wide range of lattice depths. The excitation energy structures reveal the interaction effect through the whole range of lattice depth.Comment: 6 pages, 5 figure