299 research outputs found

    (Un)reasonable Allure of Ante-hoc Interpretability for High-stakes Domains: Transparency Is Necessary but Insufficient for Explainability

    Full text link
    Ante-hoc interpretability has become the holy grail of explainable machine learning for high-stakes domains such as healthcare; however, this notion is elusive, lacks a widely-accepted definition and depends on the deployment context. It can refer to predictive models whose structure adheres to domain-specific constraints, or ones that are inherently transparent. The latter notion assumes observers who judge this quality, whereas the former presupposes them to have technical and domain expertise, in certain cases rendering such models unintelligible. Additionally, its distinction from the less desirable post-hoc explainability, which refers to methods that construct a separate explanatory model, is vague given that transparent predictors may still require (post-)processing to yield satisfactory explanatory insights. Ante-hoc interpretability is thus an overloaded concept that comprises a range of implicit properties, which we unpack in this paper to better understand what is needed for its safe deployment across high-stakes domains. To this end, we outline model- and explainer-specific desiderata that allow us to navigate its distinct realisations in view of the envisaged application and audience

    Interpretability and Explainability: A Machine Learning Zoo Mini-tour

    Full text link
    In this review, we examine the problem of designing interpretable and explainable machine learning models. Interpretability and explainability lie at the core of many machine learning and statistical applications in medicine, economics, law, and natural sciences. Although interpretability and explainability have escaped a clear universal definition, many techniques motivated by these properties have been developed over the recent 30 years with the focus currently shifting towards deep learning methods. In this review, we emphasise the divide between interpretability and explainability and illustrate these two different research directions with concrete examples of the state-of-the-art. The review is intended for a general machine learning audience with interest in exploring the problems of interpretation and explanation beyond logistic regression or random forest variable importance. This work is not an exhaustive literature survey, but rather a primer focusing selectively on certain lines of research which the authors found interesting or informative

    Generalized Multimodal ELBO

    Full text link
    Multiple data types naturally co-occur when describing real-world phenomena and learning from them is a long-standing goal in machine learning research. However, existing self-supervised generative models approximating an ELBO are not able to fulfill all desired requirements of multimodal models: their posterior approximation functions lead to a trade-off between the semantic coherence and the ability to learn the joint data distribution. We propose a new, generalized ELBO formulation for multimodal data that overcomes these limitations. The new objective encompasses two previous methods as special cases and combines their benefits without compromises. In extensive experiments, we demonstrate the advantage of the proposed method compared to state-of-the-art models in self-supervised, generative learning tasks.Comment: 2021 ICL

    Multimodal Generative Learning Utilizing Jensen-Shannon-Divergence

    Full text link
    Learning from different data types is a long-standing goal in machine learning research, as multiple information sources co-occur when describing natural phenomena. However, existing generative models that approximate a multimodal ELBO rely on difficult or inefficient training schemes to learn a joint distribution and the dependencies between modalities. In this work, we propose a novel, efficient objective function that utilizes the Jensen-Shannon divergence for multiple distributions. It simultaneously approximates the unimodal and joint multimodal posteriors directly via a dynamic prior. In addition, we theoretically prove that the new multimodal JS-divergence (mmJSD) objective optimizes an ELBO. In extensive experiments, we demonstrate the advantage of the proposed mmJSD model compared to previous work in unsupervised, generative learning tasks.Comment: Accepted at NeurIPS 2020, camera-ready versio

    Decoupling State Representation Methods from Reinforcement Learning in Car Racing

    Get PDF
    In the quest for efficient and robust learning methods, combining unsupervised state representation learning and reinforcement learning (RL) could offer advantages for scaling RL algorithms by providing the models with a useful inductive bias. For achieving this, an encoder is trained in an unsupervised manner with two state representation methods, a variational autoencoder and a contrastive estimator. The learned features are then fed to the actor-critic RL algorithm Proximal Policy Optimization (PPO) to learn a policy for playing Open AI's car racing environment. Hence, such procedure permits to decouple state representations from RL-controllers. For the integration of RL with unsupervised learning, we explore various designs for variational autoencoders and contrastive learning. The proposed method is compared to a deep network trained directly on pixel inputs with PPO. The results show that the proposed method performs slightly worse than directly learning from pixel inputs; however, it has a more stable learning curve, a substantial reduction of the buffer size, and requires optimizing 88% fewer parameters. These results indicate that the use of pre-trained state representations has several benefits for solving RL tasks.</p

    scTree: Discovering Cellular Hierarchies in the Presence of Batch Effects in scRNA-seq Data

    Full text link
    We propose a novel method, scTree, for single-cell Tree Variational Autoencoders, extending a hierarchical clustering approach to single-cell RNA sequencing data. scTree corrects for batch effects while simultaneously learning a tree-structured data representation. This VAE-based method allows for a more in-depth understanding of complex cellular landscapes independently of the biasing effects of batches. We show empirically on seven datasets that scTree discovers the underlying clusters of the data and the hierarchical relations between them, as well as outperforms established baseline methods across these datasets. Additionally, we analyze the learned hierarchy to understand its biological relevance, thus underpinning the importance of integrating batch correction directly into the clustering procedure

    Beyond Normal: On the Evaluation of Mutual Information Estimators

    Full text link
    Mutual information is a general statistical dependency measure which has found applications in representation learning, causality, domain generalization and computational biology. However, mutual information estimators are typically evaluated on simple families of probability distributions, namely multivariate normal distribution and selected distributions with one-dimensional random variables. In this paper, we show how to construct a diverse family of distributions with known ground-truth mutual information and propose a language-independent benchmarking platform for mutual information estimators. We discuss the general applicability and limitations of classical and neural estimators in settings involving high dimensions, sparse interactions, long-tailed distributions, and high mutual information. Finally, we provide guidelines for practitioners on how to select appropriate estimator adapted to the difficulty of problem considered and issues one needs to consider when applying an estimator to a new data set.Comment: Accepted at NeurIPS 2023. Code available at https://github.com/cbg-ethz/bm

    Benchmarking the Fairness of Image Upsampling Methods

    Full text link
    Recent years have witnessed a rapid development of deep generative models for creating synthetic media, such as images and videos. While the practical applications of these models in everyday tasks are enticing, it is crucial to assess the inherent risks regarding their fairness. In this work, we introduce a comprehensive framework for benchmarking the performance and fairness of conditional generative models. We develop a set of metrics\unicode{x2013}inspired by their supervised fairness counterparts\unicode{x2013}to evaluate the models on their fairness and diversity. Focusing on the specific application of image upsampling, we create a benchmark covering a wide variety of modern upsampling methods. As part of the benchmark, we introduce UnfairFace, a subset of FairFace that replicates the racial distribution of common large-scale face datasets. Our empirical study highlights the importance of using an unbiased training set and reveals variations in how the algorithms respond to dataset imbalances. Alarmingly, we find that none of the considered methods produces statistically fair and diverse results. All experiments can be reproduced using our provided repository.Comment: This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version of Record was published at the 2024 ACM Conference on Fairness, Accountability, and Transparency (FAccT '24
    corecore