2,563 research outputs found
On the uniqueness of generating Hamiltonian for continuous limits of Hamiltonians flows
We show that if a sequence of Hamiltonian flows has a limit, and if the
generating Hamiltonians of the sequence have a limit, then this limit is
uniquely determned by the limiting flow. This answers a question by Y.G.
Oh.Comment: 11 page
Full Diversity Unitary Precoded Integer-Forcing
We consider a point-to-point flat-fading MIMO channel with channel state
information known both at transmitter and receiver. At the transmitter side, a
lattice coding scheme is employed at each antenna to map information symbols to
independent lattice codewords drawn from the same codebook. Each lattice
codeword is then multiplied by a unitary precoding matrix and sent
through the channel. At the receiver side, an integer-forcing (IF) linear
receiver is employed. We denote this scheme as unitary precoded integer-forcing
(UPIF). We show that UPIF can achieve full-diversity under a constraint based
on the shortest vector of a lattice generated by the precoding matrix . This constraint and a simpler version of that provide design criteria for
two types of full-diversity UPIF. Type I uses a unitary precoder that adapts at
each channel realization. Type II uses a unitary precoder, which remains fixed
for all channel realizations. We then verify our results by computer
simulations in , and MIMO using different QAM
constellations. We finally show that the proposed Type II UPIF outperform the
MIMO precoding X-codes at high data rates.Comment: 12 pages, 8 figures, to appear in IEEE-TW
Algebraic number theory and code design for Rayleigh fading channels
Algebraic number theory is having an increasing impact in code design for many different coding applications, such as single antenna fading channels and more recently, MIMO systems.
Extended work has been done on single antenna fading channels, and algebraic lattice codes have been proven to be an effective tool. The general framework has been settled in the last ten years and many explicit code constructions based on algebraic number theory are now available.
The aim of this work is to provide both an overview on algebraic lattice code designs for Rayleigh fading channels, as well as a tutorial introduction to algebraic number theory. The basic facts of this mathematical field will be illustrated by many examples and by the use of a computer algebra freeware in order to make it more accessible
to a large audience
- …