346 research outputs found

    Growth of Smaller Grain Attached on Larger One: Algorithm to Overcome Unphysical Overlap between Grain

    Full text link
    As a smaller grain, which is attached on larger one, is growing, it pushes also the larger one and other grains in its surrounding. In a simulation of similar system, repulsive force such as contact force based on linear spring-dashpot model can not accommodate this situation when cell growing rate is faster than simulation time step, since it produces sudden large overlap between grains that makes unphysical result. An algorithm that preserves system linear momentum by introducing additional velocity induced by cell growth is presented in this work. It should be performed in an implicit step. The algorithm has successfully eliminated unphysical overlap.Comment: 6 pages, 4 figures, conference paper (ICMNS 2014, 2-3 November 2014, Bandung, Indonesia

    Giant Magnetoresistance Effect in Organic Material and Its Potential for Magnetic Sensor

    Full text link
    Giant magnetoresistance (GMR) material has great potential as next generation magnetic field sensing devices, have magnetic properties and high electrical potential to be developed into various applications such as: magnetic field sensor measurements, current measurements, linear and rotational position sensor, data storage, head recording, and non-volatile magnetic random access memory (MRAM). Today, the new GMR materials based on organic material obtained after allowing for Organic Magnetoresistance (OMAR) was found in OLEDs (organic light-emitting diodes). This organic material is used as a spacer layer in GMR devices with spin-valve structures. Traditionally, metals and semiconductors are used as a spacer layer in spin-valve. However, several factors such as spin scattering caused by large atoms of the spacer material and the interface scattering of ferromagnetic with a spacer, will limit the efficiency of spin-valve. In this paper, we describe a new GMR materials based on organic material that we have developed.Comment: 3 pages, 6 figures, sumbitted to ICICI-BME 2011 "Science and Technology for Health
    corecore