1,795 research outputs found
A model for the influence of pressure on the bulk modulus and the influence of temperature on the solidification pressure for liquid lubricants
Two pressure chambers, for compression experiments with liquids from zero to 2.2 GPa pressure, are described. The experimentally measured compressions are then compared to theoretical values given by an isothermal model of equation of state recently introduced for solids. The model describes the pressure and bulk modulus as a function of compression for different types of lubricants with a very high accuracy up to the pressure limit of the high pressure chamber used (2.2 GPa). In addition the influence of temperature on static solidification pressure was found to be a simple function of the thermal expansion of the fluid
Aluminum work function: Effect of oxidation, mechanical scraping and ion bombardment
Surface studies have been performed on aluminum polycrystalline surfaces which have been mechanically scraped. Such studies were initiated in order to understand surface effects occurring in tribological processes which involve rubbing surfaces and the effects of adsorption of oxygen. To characterize the surfaces, the following three different experimental approaches have been used: (1) X.P.S. (X-ray photoelectron spectroscopy), in order to check the cleanliness of the surfaces and follow the adsorption and oxidation kinetics; (2) Analysis of the work function changes by following the energy spectra of secondary electrons emitted under low energy electron bombardment; and (3) Analysis of photoemission intensities under U.V. excitation. The reference state being chosen to be the surface cleaned by ion bombardment and exposures to oxygen atmospheres have been shown to lower the work function of clean polycrystalline aluminum by 1.2 eV. The oxygen pressure is found to affect only the kinetics of these experiments. Mechanical scraping has been shown to induce a decrease ( 0.3 eV) in the work function, which could sharply modify the kinetics of adsorption on the surface
Radiation Pressure Induced Instabilities in Laser Interferometric Detectors of Gravitational Waves
The large scale interferometric gravitational wave detectors consist of
Fabry-Perot cavities operating at very high powers ranging from tens of kW to
MW for next generations. The high powers may result in several nonlinear
effects which would affect the performance of the detector. In this paper, we
investigate the effects of radiation pressure, which tend to displace the
mirrors from their resonant position resulting in the detuning of the cavity.
We observe a remarkable effect, namely, that the freely hanging mirrors gain
energy continuously and swing with increasing amplitude. It is found that the
`time delay', that is, the time taken for the field to adjust to its
instantaneous equilibrium value, when the mirrors are in motion, is responsible
for this effect. This effect is likely to be important in the optimal operation
of the full-scale interferometers such as VIRGO and LIGO.Comment: 27 pages, 11 figures, RevTex styl
Generalized squeezed-coherent states of the finite one-dimensional oscillator and matrix multi-orthogonality
A set of generalized squeezed-coherent states for the finite u(2) oscillator
is obtained. These states are given as linear combinations of the mode
eigenstates with amplitudes determined by matrix elements of exponentials in
the su(2) generators. These matrix elements are given in the (N+1)-dimensional
basis of the finite oscillator eigenstates and are seen to involve 3x3 matrix
multi-orthogonal polynomials Q_n(k) in a discrete variable k which have the
Krawtchouk and vector-orthogonal polynomials as their building blocks. The
algebraic setting allows for the characterization of these polynomials and the
computation of mean values in the squeezed-coherent states. In the limit where
N goes to infinity and the discrete oscillator approaches the standard harmonic
oscillator, the polynomials tend to 2x2 matrix orthogonal polynomials and the
squeezed-coherent states tend to those of the standard oscillator.Comment: 18 pages, 1 figur
Temperature effects on the universal equation of state of solids
Recently it has been argued based on theoretical calculations and experimental data that there is a universal form for the equation of state of solids. This observation was restricted to the range of temperatures and pressures such that there are no phase transitions. The use of this universal relation to estimate pressure-volume relations (i.e., isotherms) required three input parameters at each fixed temperature. It is shown that for many solids the input data needed to predict high temperature thermodynamical properties can be dramatically reduced. In particular, only four numbers are needed: (1) the zero pressure (P=0) isothermal bulk modulus; (2)it P=0 pressure derivative; (3) the P=0 volume; and (4) the P=0 thermal expansion; all evaluated at a single (reference) temperature. Explicit predictions are made for the high temperature isotherms, the thermal expansion as a function of temperature, and the temperature variation of the isothermal bulk modulus and its pressure derivative. These predictions are tested using experimental data for three representative solids: gold, sodium chloride, and xenon. Good agreement between theory and experiment is found
Universality in the compressive behavior of solids
It was discovered that the isothermal equation of state for solids in compression is a simple, universal form. This single form accurately describes the pressure and bulk modulus as a function of volume for tonic, metallic, covalent, and rare gas solids
Ab initio study of the thermodynamic properties of rare-earthmagnesium intermetallics MgRE (RE=Y, Dy, Pr, Tb)
We have performed an ab initio study of the thermodynamical properties of
rare-earth-magnesium intermetallic compounds MgRE (RE=Y, Dy, Pr, Tb) with
CsCl-type B2-type structures. The calculations have been carried out the
density functional theory and density functional perturbation theory in
combination with the quasiharmonic approximation. The phonon-dispersion curves
and phonon total and partial density of states have been investigated. Our
results show that the contribution of RE atoms is dominant in phonon frequency,
and this character agrees with the previous discussion by using atomistic
simulations. The temperature dependence of various quantities such as the
thermal expansions, bulk modulus, and the heat capacity are obtained. The
electronic contributions to the specific heat are discussed, and found to be
important for the calculated MgRE intermetallics.Comment: 12 pages, 6 figure
The Dynamics of Sustained Reentry in a Loop Model with Discrete Gap Junction Resistance
Dynamics of reentry are studied in a one dimensional loop of model cardiac
cells with discrete intercellular gap junction resistance (). Each cell is
represented by a continuous cable with ionic current given by a modified
Beeler-Reuter formulation. For below a limiting value, propagation is found
to change from period-1 to quasi-periodic () at a critical loop length
() that decreases with . Quasi-periodic reentry exists from
to a minimum length () that is also shortening with .
The decrease of is not a simple scaling, but the bifurcation can
still be predicted from the slope of the restitution curve giving the duration
of the action potential as a function of the diastolic interval. However, the
shape of the restitution curve changes with .Comment: 6 pages, 7 figure
A high accuracy method for the simulation of non-ideal optical cavities
We present an algorithm able to represent with a high accuracy any kind of stable cavity, even when many static or dynamical defects are present, like misalignments, curvature errors, surface irregularities, substrate inhomogeneities... We first present the theory, giving ideas on its validity domain, and a discussion of its accuracy in terms of a RMS phase error, which is found to be negligible compared to the phase noise due to roughness of optical surfaces. Then we show that the well-known features of ideal resonant cavities are found by the algorithm with a good accuracy. This tool can help for designing laser cavities, mode cleaners, or passive Fabry-Perot standards ; as an example, some results are presented concerning the design of a very long cavity planned for interferometric purposes
- …