2 research outputs found
Photon Scattering from a System of Multi-Level Quantum Emitters. I. Formalism
We introduce a formalism to solve the problem of photon scattering from a system of multi-level quantum emitters. Our approach provides a direct solution of the scattering dynamics. As such the formalism gives the scattered fields amplitudes in the limit of a weak incident intensity. Our formalism is equipped to treat both multi-emitter and multi-level emitter systems, and is applicable to a plethora of photon scattering problems including conditional state preparation by photo-detection. In this paper, we develop the general formalism for an arbitrary geometry. In the following paper (part II), we reduce the general photon scattering formalism to a form that is applicable to -dimensional waveguides, and show its applicability by considering explicit examples with various emitter configurations
Photon Scattering from a System of Multi-Level Quantum Emitters. II. Application to Emitters Coupled to a 1D Waveguide
In a preceding paper we introduced a formalism to study the scattering of low intensity fields from a system of multi-level emitters embedded in a D dielectric medium. Here we show how this photon-scattering relation can be used to analyze the scattering of single photons and weak coherent states from any generic multi-level quantum emitter coupled to a D waveguide. The reduction of the photon-scattering relation to D waveguides provides for the first time a direct solution of the scattering problem involving low intensity fields in the waveguide QED regime. To show how our formalism works, we consider examples of multi-level emitters and evaluate the transmitted and reflected field amplitude. Furthermore, we extend our study to include the dynamical response of the emitters for scattering of a weak coherent photon pulse. As our photon-scattering relation is based on the Heisenberg picture, it is quite useful for problems involving photo-detection in the waveguide architecture. We show this by considering a specific problem of state generation by photo-detection in a multi-level emitter, where our formalism exhibits its full potential. Since the considered emitters are generic, the D results apply to a plethora of physical systems like atoms, ions, quantum dots, superconducting qubits, and nitrogen-vacancy centers coupled to a D waveguide or transmission line
