193 research outputs found
Surface area of particle administered versus mass in determining the pulmonary toxicity of ultrafine and fine carbon black: comparison to ultrafine titanium dioxide
Background: Nanoparticles are characterized by having a high surface area per mass. Particulate surface area has been reported to play an important role in determining the biological activity of nanoparticles. However, recent reports have questioned this relationship. This study was conducted to determine whether mass of particles or surface area of particles is the more appropriate dose metric for pulmonary toxicity studies. In this study, rats were exposed by intratracheal instillation to various doses of ultrafine and fine carbon black. At 1, 7, or 42 days post-exposure, inflammatory and cytotoxic potential of each particle type was compared on both a mass dosage (mg/rat) as well as an equal surface area dosage (cm2 of particles per cm2 of alveolar epithelium). In an additional study, the pulmonary responses to instillation of ultrafine carbon black were compared to equivalent particle surface area doses of ultrafine titanium dioxide. Results: Ultrafine carbon black particles caused a dose dependent but transient inflammatory and cytotoxic response. On a mass basis, these responses were significantly (65 fold) greater than those for fine sized carbon black. However, when doses were equalized based on surface area of particles given, the ultrafine carbon black particles were only slightly (non-significantly) more inflammogenic and cytotoxic compared to the fine sized carbon black. At one day post-exposure, inflammatory potencies of the ultrafine carbon black and ultrafine titanium dioxide particles were similar. However, while the pulmonary reaction to ultrafine carbon black resolved with time, the inflammatory effects of ultrafine titanium dioxide were more persistent over a 42 day post-exposure period. Conclusion: These results indicate that for low toxicity low solubility materials, surface area of particles administered rather than mass burden of particles may be a more appropriate dose metric for pulmonary toxicity studies. In addition, ultrafine titanium dioxide appears to be more bioactive than ultrafine carbon black on an equivalent surface area of particles delivered basis
Particulate Matter Exposure Impairs Systemic Microvascular Endothelium-Dependent Dilation
Acute exposure to airborne pollutants, such as solid particulate matter (PM), increases the risk of cardiovascular dysfunction, but the mechanisms by which PM evokes systemic effects remain to be identified. The purpose of this study was to determine if pulmonary exposure to a PM surrogate, such as residual oil fly ash (ROFA), affects endothelium-dependent dilation in the systemic microcirculation. Rats were intratracheally instilled with ROFA at 0.1, 0.25, 1 or 2 mg/rat 24 hr before experimental measurements. Rats intratracheally instilled with saline or titanium dioxide (0.25 mg/rat) served as vehicle or particle control groups, respectively. In vivo microscopy of the spinotrapezius muscle was used to study systemic arteriolar dilator responses to the Ca(2+) ionophore A23187, administered by ejection via pressurized micropipette into the arteriolar lumen. We used analysis of bronchoalveolar lavage (BAL) samples to monitor identified pulmonary inflammation and damage. To determine if ROFA exposure affected arteriolar nitric oxide sensitivity, sodium nitroprusside was iontophoretically applied to arterioles of rats exposed to ROFA. In saline-treated rats, A23187 dilated arterioles up to 72 ± 7% of maximum. In ROFA- and TiO(2)-exposed rats, A23187-induced dilation was significantly attenuated. BAL fluid analysis revealed measurable pulmonary inflammation and damage after exposure to 1 and 2 mg ROFA (but not TiO(2) or < 1 mg ROFA), as evidenced by significantly higher polymorphonuclear leukocyte cell counts, enhanced BAL albumin levels, and increased lactate dehydrogenase activity in BAL fluid. The sensitivity of arteriolar smooth muscle to NO was similar in saline-treated and ROFA-exposed rats, suggesting that pulmonary exposure to ROFA affected endothelial rather than smooth muscle function. A significant increase in venular leukocyte adhesion and rolling was observed in ROFA-exposed rats, suggesting local inflammation at the systemic microvascular level. These results indicate that pulmonary PM exposure impairs systemic endothelium-dependent arteriolar dilation. Moreover, because rats exposed to < 1 mg ROFA or TiO(2) did not exhibit BAL signs of pulmonary damage or inflammation, it appears that PM exposure can impair systemic microvascular function independently of detectable pulmonary inflammation
Pulmonary response to intratracheal instillation of ultrafine versus fine titanium dioxide: role of particle surface area
<p>Abstract</p> <p>Background</p> <p>The production and use of nanoparticles is growing rapidly due to the unique physical and chemical properties associated with their nano size and large surface area. Since nanoparticles have unique physicochemical properties, their bioactivity upon exposure to workers or consumers is of interest. In this study, the issue of what dose metric (mass dose versus surface area dose) is appropriate for toxicological studies has been addressed. Rats were exposed by intratracheal instillation to various doses of ultrafine or fine TiO<sub>2</sub>. At 1, 7, or 42 days post-exposure, inflammatory and cytotoxic potential of each particle type was compared on both a mass dosage (mg/rat) as well as an equal surface area dosage (cm<sup>2 </sup>of particles per cm<sup>2 </sup>of alveolar epithelium) basis.</p> <p>Results</p> <p>The findings of the study show that on a mass basis the ultrafine particles caused significantly more inflammation and were significantly more cytotoxic than the fine sized particles. However, when doses were equalized based on surface area of particles delivered, the ultrafine particles were only slightly more inflammogenic and cytotoxic when compared to the fine sized particles. Lung burden data indicate that ultrafine TiO<sub>2 </sub>appears to migrate to the interstitium to a much greater extent than fine TiO<sub>2</sub>.</p> <p>Conclusion</p> <p>This study suggests that surface area of particles may be a more appropriate dose metric for pulmonary toxicity studies than mass of particles.</p
A new approach to design safe CNTs with an understanding of redox potential
BACKGROUND: Carbon nanotubes (CNTs) are being increasingly industrialized and applied for various products. As of today, although several toxicological evaluations of CNTs have been conducted, designing safer CNTs is not practiced because reaction kinetics of CNTs with bioactive species is not fully understood. RESULTS: The authors propose a kinetic mechanism to establish designing safe CNTs as a new goal. According to a literature search on the behavior of CNTs and the effects of impurities, it is found that chemical reactions on CNT surface are attributed to redox reactions involving metal impurities and carbon structures at the CNT surface. CONCLUSION: A new goal is proposed to design safer CNTs using the redox potential hypothesis. The value of this hypothesis must be practically investigated and proven through the further experiments
Induction of stem-like cells with malignant properties by chronic exposure of human lung epithelial cells to single-walled carbon nanotubes
Background
Carbon nanotubes (CNT) hold great promise to create new and better products for commercial and biomedical applications, but their long-term adverse health effects are a major concern. The objective of this study was to address human lung cancer risks associated with chronic pulmonary exposure to single-walled (SW) CNT through the fundamental understanding of cellular and molecular processes leading to carcinogenesis. We hypothesized that the acquisition of cancer stem cells (CSC), a subpopulation that drive tumor initiation and progression, may contribute to CNT carcinogenesis. Methods
Non-tumorigenic human lung epithelial cells were chronically exposed to well-dispersed SWCNT for a period of 6 months at the physiologically relevant concentration of 0.02 μg/cm2 surface area dose. Chronic SWCNT-exposed cells were evaluated for the presence of CSC-like cells under CSC-selective conditions of tumor spheres and side population (SP). CSC-like cells were isolated using fluorescence-activated cell sorting and were assessed for aggressive behaviors, including acquired apoptosis resistance and increased cell migration and invasion in vitro, and tumor-initiating capability in vivo. Non-small cell lung cancer cells served as a positive control. Results
We demonstrated for the first time the existence of CSC-like cells in all clones of chronic SWCNT-exposed lung epithelial cells. These CSC-like cells, in contrary to their non-CSC counterpart, possessed all biological features of lung CSC that are central to irreversible malignant transformation, self-renewal, aggressive cancer behaviors, and in vivo tumorigenesis. These cells also displayed aberrant stem cell markers, notably Nanog, SOX-2, SOX-17 and E-cadherin. Restored expression of tumor suppressor p53 abrogated CSC properties of CSC-like cells. Furthermore, we identified specific stem cell surface markers CD24low and CD133high that are associated with SWCNT-induced CSC formation and tumorigenesis. Conclusions
Our findings provide new and compelling evidence for the acquisition of CSC-like cells induced by chronic SWCNT exposure, which are likely to be a major driving force for SWCNT tumorigenesis. Thus, our study supports prudent adoption of prevention strategies and implementation of exposure control for SWCNT. We also suggest that the detection of CSC and associated surface markers may provide an effective screening tool for prediction of the carcinogenic potential of SWCNT and related nanoparticles
The limits of testing particle-mediated oxidative stress in vitro in predicting diverse pathologies; relevance for testing of nanoparticles
In vitro studies with particles are a major staple of particle toxicology, generally used to investigate mechanisms and better understand the molecular events underlying cellular effects. However, there is ethical and financial pressure in nanotoxicology, the new sub-specialty of particle toxicology, to avoid using animals. Therefore an increasing amount of studies are being published using in vitro approaches and such studies require careful interpretation. We point out here that 3 different conventional pathogenic particle types, PM10, asbestos and quartz, which cause diverse pathological effects, have been reported to cause very similar oxidative stress effects in cells in culture. We discuss the likely explanation and implications of this apparent paradox, and its relevance for testing in nanotoxicology
Metallic nickel nano- and fine particles induce JB6 cell apoptosis through a caspase-8/AIF mediated cytochrome c-independent pathway
<p>Abstract</p> <p>Background</p> <p>Carcinogenicity of nickel compounds has been well documented. However, the carcinogenic effect of metallic nickel is still unclear. The present study investigates metallic nickel nano- and fine particle-induced apoptosis and the signal pathways involved in this process in JB6 cells. The data obtained from this study will be of benefit for elucidating the pathological and carcinogenic potential of metallic nickel particles.</p> <p>Results</p> <p>Using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, we found that metallic nickel nanoparticles exhibited higher cytotoxicity than fine particles. Both metallic nickel nano- and fine particles induced JB6 cell apoptosis. Metallic nickel nanoparticles produced higher apoptotic induction than fine particles. Western-blot analysis showed an activation of proapoptotic factors including Fas (CD95), Fas-associated protein with death domain (FADD), caspase-8, death receptor 3 (DR3) and BID in apoptotic cells induced by metallic nickel particles. Immunoprecipitation (IP) western blot analysis demonstrated the formation of the Fas-related death-inducing signaling complex (DISC) in the apoptotic process. Furthermore, lamin A and beta-actin were cleaved. Moreover, we found that apoptosis-inducing factor (AIF) was up-regulated and released from mitochondria to cytoplasm. Interestingly, although an up-regulation of cytochrome <it>c </it>was detected in the mitochondria of metallic nickel particle-treated cells, no cytochrome <it>c </it>release from mitochondria to cytoplasm was found. In addition, activation of antiapoptotic factors including phospho-Akt (protein kinase B) and Bcl-2 was detected. Further studies demonstrated that metallic nickel particles caused no significant changes in the mitochondrial membrane permeability after 24 h treatment.</p> <p>Conclusion</p> <p>In this study, metallic nickel nanoparticles caused higher cytotoxicity and apoptotic induction than fine particles in JB6 cells. Apoptotic cell death induced by metallic nickel particles in JB6 cells is through a caspase-8/AIF mediated cytochrome <it>c</it>-independent pathway. Lamin A and beta-actin are involved in the process of apoptosis. Activation of Akt and Bcl-2 may play an important role in preventing cytochrome <it>c </it>release from mitochondria to the cytoplasm and may also be important in the carcinogenicity of metallic nickel particles. In addition, the results may be useful as an important reference when comparing the toxicities of different nickel compounds.</p
Assessment of Pulmonary Fibrogenic Potential of Multiwalled Carbon Nanotubes in Human Lung Cells
Multiwalled carbon nanotubes have been shown to possess unusual fibrogenic activity in vivo and are currently the focus of intense toxicological investigations. This study further determines the fibrogenic potential of well-dispersed MWCNT in human lung cell culture models and to develop a novel platform for understanding the cellular mechanisms of MWCNT-induced lung fibrosis. Survanta, a natural lung surfactant, showed effectiveness in dispersing agglomerates of MWCNT to fine structures similar in size to aerosolized one. At relevant low doses (0.002–0.2 μg/cm2), MWCNT exhibited a dose-dependent bio-effect on the human lung epithelial cells which is more pronounced in dispersed-MWCNT compared to non-dispersed form. Significantly elevated levels of fibrogenic mediators, such as transforming growth factor-β1 and matrix metalloprotienases-9 were observed in the dispersed-MWCNT treated lung epithelial cells. Based on previous in vivo studies showing that dispersed-MWCNT penetrated the interstitium and caused rapid interstitial fibrosis, we evaluated the potential direct interaction between lung fibroblasts and MWCNT. Direct stimulation of human lung fibroblast cell proliferation, collagen expression and fibroblast growth factor-2 were observed which suggests novel mechanisms of MWCNT-induced lung fibrosis. Our results indicate that the dispersion status of MWCNT determines their fibrogenic activity which is consistent with in vivo findings
- …