82 research outputs found

    Finding Induced Subgraphs via Minimal Triangulations

    Get PDF
    Potential maximal cliques and minimal separators are combinatorial objects which were introduced and studied in the realm of minimal triangulations problems including Minimum Fill-in and Treewidth. We discover unexpected applications of these notions to the field of moderate exponential algorithms. In particular, we show that given an n-vertex graph G together with its set of potential maximal cliques Pi_G, and an integer t, it is possible in time |Pi_G| * n^(O(t)) to find a maximum induced subgraph of treewidth t in G; and for a given graph F of treewidth t, to decide if G contains an induced subgraph isomorphic to F. Combined with an improved algorithm enumerating all potential maximal cliques in time O(1.734601^n), this yields that both problems are solvable in time 1.734601^n * n^(O(t)).Comment: 14 page

    Large induced subgraphs via triangulations and CMSO

    Full text link
    We obtain an algorithmic meta-theorem for the following optimization problem. Let \phi\ be a Counting Monadic Second Order Logic (CMSO) formula and t be an integer. For a given graph G, the task is to maximize |X| subject to the following: there is a set of vertices F of G, containing X, such that the subgraph G[F] induced by F is of treewidth at most t, and structure (G[F],X) models \phi. Some special cases of this optimization problem are the following generic examples. Each of these cases contains various problems as a special subcase: 1) "Maximum induced subgraph with at most l copies of cycles of length 0 modulo m", where for fixed nonnegative integers m and l, the task is to find a maximum induced subgraph of a given graph with at most l vertex-disjoint cycles of length 0 modulo m. 2) "Minimum \Gamma-deletion", where for a fixed finite set of graphs \Gamma\ containing a planar graph, the task is to find a maximum induced subgraph of a given graph containing no graph from \Gamma\ as a minor. 3) "Independent \Pi-packing", where for a fixed finite set of connected graphs \Pi, the task is to find an induced subgraph G[F] of a given graph G with the maximum number of connected components, such that each connected component of G[F] is isomorphic to some graph from \Pi. We give an algorithm solving the optimization problem on an n-vertex graph G in time O(#pmc n^{t+4} f(t,\phi)), where #pmc is the number of all potential maximal cliques in G and f is a function depending of t and \phi\ only. We also show how a similar running time can be obtained for the weighted version of the problem. Pipelined with known bounds on the number of potential maximal cliques, we deduce that our optimization problem can be solved in time O(1.7347^n) for arbitrary graphs, and in polynomial time for graph classes with polynomial number of minimal separators

    Finding Induced Subgraphs via Minimal Triangulations

    Get PDF
    Potential maximal cliques and minimal separators are combinatorial objects which were introduced and studied in the realm of minimal triangulation problems in- cluding Minimum Fill-in and Treewidth. We discover unexpected applications of these notions to the field of moderate exponential algorithms. In particular, we show that given an n-vertex graph G together with its set of potential maximal cliques, and an integer t, it is possible in time the number of potential maximal cliques times O(nO(t)) to find a maximum induced subgraph of treewidth t in G and for a given graph F of treewidth t, to decide if G contains an induced subgraph isomorphic to F. Combined with an improved algorithm enumerating all potential maximal cliques in time O(1.734601n ), this yields that both the problems are solvable in time 1.734601n * nO(t) .publishedVersio

    TREEWIDTH and PATHWIDTH parameterized by vertex cover

    Full text link
    After the number of vertices, Vertex Cover is the largest of the classical graph parameters and has more and more frequently been used as a separate parameter in parameterized problems, including problems that are not directly related to the Vertex Cover. Here we consider the TREEWIDTH and PATHWIDTH problems parameterized by k, the size of a minimum vertex cover of the input graph. We show that the PATHWIDTH and TREEWIDTH can be computed in O*(3^k) time. This complements recent polynomial kernel results for TREEWIDTH and PATHWIDTH parameterized by the Vertex Cover

    Minimum Fill-in of Sparse Graphs: Kernelization and Approximation

    Get PDF
    The Minimum Fill-in problem is to decide if a graph can be triangulated by adding at most k edges. The problem has important applications in numerical algebra, in particular in sparse matrix computations. We develop kernelization algorithms for the problem on several classes of sparse graphs. We obtain linear kernels on planar graphs, and kernels of size O(k^{3/2}) in graphs excluding some fixed graph as a minor and in graphs of bounded degeneracy. As a byproduct of our results, we obtain approximation algorithms with approximation ratios O(log{k}) on planar graphs and O(sqrt{k} log{k}) on H-minor-free graphs. These results significantly improve the previously known kernelization and approximation results for Minimum Fill-in on sparse graphs.publishedVersio

    Exploring Subexponential Parameterized Complexity of Completion Problems

    Get PDF
    Let F{\cal F} be a family of graphs. In the F{\cal F}-Completion problem, we are given a graph GG and an integer kk as input, and asked whether at most kk edges can be added to GG so that the resulting graph does not contain a graph from F{\cal F} as an induced subgraph. It appeared recently that special cases of F{\cal F}-Completion, the problem of completing into a chordal graph known as Minimum Fill-in, corresponding to the case of F={C4,C5,C6,}{\cal F}=\{C_4,C_5,C_6,\ldots\}, and the problem of completing into a split graph, i.e., the case of F={C4,2K2,C5}{\cal F}=\{C_4, 2K_2, C_5\}, are solvable in parameterized subexponential time 2O(klogk)nO(1)2^{O(\sqrt{k}\log{k})}n^{O(1)}. The exploration of this phenomenon is the main motivation for our research on F{\cal F}-Completion. In this paper we prove that completions into several well studied classes of graphs without long induced cycles also admit parameterized subexponential time algorithms by showing that: - The problem Trivially Perfect Completion is solvable in parameterized subexponential time 2O(klogk)nO(1)2^{O(\sqrt{k}\log{k})}n^{O(1)}, that is F{\cal F}-Completion for F={C4,P4}{\cal F} =\{C_4, P_4\}, a cycle and a path on four vertices. - The problems known in the literature as Pseudosplit Completion, the case where F={2K2,C4}{\cal F} = \{2K_2, C_4\}, and Threshold Completion, where F={2K2,P4,C4}{\cal F} = \{2K_2, P_4, C_4\}, are also solvable in time 2O(klogk)nO(1)2^{O(\sqrt{k}\log{k})} n^{O(1)}. We complement our algorithms for F{\cal F}-Completion with the following lower bounds: - For F={2K2}{\cal F} = \{2K_2\}, F={C4}{\cal F} = \{C_4\}, F={P4}{\cal F} = \{P_4\}, and F={2K2,P4}{\cal F} = \{2K_2, P_4\}, F{\cal F}-Completion cannot be solved in time 2o(k)nO(1)2^{o(k)} n^{O(1)} unless the Exponential Time Hypothesis (ETH) fails. Our upper and lower bounds provide a complete picture of the subexponential parameterized complexity of F{\cal F}-Completion problems for F{2K2,C4,P4}{\cal F}\subseteq\{2K_2, C_4, P_4\}.Comment: 32 pages, 16 figures, A preliminary version of this paper appeared in the proceedings of STACS'1
    corecore