173 research outputs found

    A Decomposition Algorithm for Nested Resource Allocation Problems

    Full text link
    We propose an exact polynomial algorithm for a resource allocation problem with convex costs and constraints on partial sums of resource consumptions, in the presence of either continuous or integer variables. No assumption of strict convexity or differentiability is needed. The method solves a hierarchy of resource allocation subproblems, whose solutions are used to convert constraints on sums of resources into bounds for separate variables at higher levels. The resulting time complexity for the integer problem is O(nlogmlog(B/n))O(n \log m \log (B/n)), and the complexity of obtaining an ϵ\epsilon-approximate solution for the continuous case is O(nlogmlog(B/ϵ))O(n \log m \log (B/\epsilon)), nn being the number of variables, mm the number of ascending constraints (such that m<nm < n), ϵ\epsilon a desired precision, and BB the total resource. This algorithm attains the best-known complexity when m=nm = n, and improves it when logm=o(logn)\log m = o(\log n). Extensive experimental analyses are conducted with four recent algorithms on various continuous problems issued from theory and practice. The proposed method achieves a higher performance than previous algorithms, addressing all problems with up to one million variables in less than one minute on a modern computer.Comment: Working Paper -- MIT, 23 page

    Separable Convex Optimization with Nested Lower and Upper Constraints

    Full text link
    We study a convex resource allocation problem in which lower and upper bounds are imposed on partial sums of allocations. This model is linked to a large range of applications, including production planning, speed optimization, stratified sampling, support vector machines, portfolio management, and telecommunications. We propose an efficient gradient-free divide-and-conquer algorithm, which uses monotonicity arguments to generate valid bounds from the recursive calls, and eliminate linking constraints based on the information from sub-problems. This algorithm does not need strict convexity or differentiability. It produces an ϵ\epsilon-approximate solution for the continuous problem in O(nlogmlognBϵ)\mathcal{O}(n \log m \log \frac{n B}{\epsilon}) time and an integer solution in O(nlogmlogB)\mathcal{O}(n \log m \log B) time, where nn is the number of decision variables, mm is the number of constraints, and BB is the resource bound. A complexity of O(nlogm)\mathcal{O}(n \log m) is also achieved for the linear and quadratic cases. These are the best complexities known to date for this important problem class. Our experimental analyses confirm the good performance of the method, which produces optimal solutions for problems with up to 1,000,000 variables in a few seconds. Promising applications to the support vector ordinal regression problem are also investigated

    Hybrid Genetic Search for the CVRP: Open-Source Implementation and SWAP* Neighborhood

    Full text link
    The vehicle routing problem is one of the most studied combinatorial optimization topics, due to its practical importance and methodological interest. Yet, despite extensive methodological progress, many recent studies are hampered by the limited access to simple and efficient open-source solution methods. Given the sophistication of current algorithms, reimplementation is becoming a difficult and time-consuming exercise that requires extensive care for details to be truly successful. Against this background, we use the opportunity of this short paper to introduce a simple -- open-source -- implementation of the hybrid genetic search (HGS) specialized to the capacitated vehicle routing problem (CVRP). This state-of-the-art algorithm uses the same general methodology as Vidal et al. (2012) but also includes additional methodological improvements and lessons learned over the past decade of research. In particular, it includes an additional neighborhood called SWAP* which consists in exchanging two customers between different routes without an insertion in place. As highlighted in our study, an efficient exploration of SWAP* moves significantly contributes to the performance of local searches. Moreover, as observed in experimental comparisons with other recent approaches on the classical instances of Uchoa et al. (2017), HGS still stands as a leading metaheuristic regarding solution quality, convergence speed, and conceptual simplicity

    Workload Equity in Vehicle Routing Problems: A Survey and Analysis

    Full text link
    Over the past two decades, equity aspects have been considered in a growing number of models and methods for vehicle routing problems (VRPs). Equity concerns most often relate to fairly allocating workloads and to balancing the utilization of resources, and many practical applications have been reported in the literature. However, there has been only limited discussion about how workload equity should be modeled in VRPs, and various measures for optimizing such objectives have been proposed and implemented without a critical evaluation of their respective merits and consequences. This article addresses this gap with an analysis of classical and alternative equity functions for biobjective VRP models. In our survey, we review and categorize the existing literature on equitable VRPs. In the analysis, we identify a set of axiomatic properties that an ideal equity measure should satisfy, collect six common measures, and point out important connections between their properties and those of the resulting Pareto-optimal solutions. To gauge the extent of these implications, we also conduct a numerical study on small biobjective VRP instances solvable to optimality. Our study reveals two undesirable consequences when optimizing equity with nonmonotonic functions: Pareto-optimal solutions can consist of non-TSP-optimal tours, and even if all tours are TSP optimal, Pareto-optimal solutions can be workload inconsistent, i.e. composed of tours whose workloads are all equal to or longer than those of other Pareto-optimal solutions. We show that the extent of these phenomena should not be underestimated. The results of our biobjective analysis are valid also for weighted sum, constraint-based, or single-objective models. Based on this analysis, we conclude that monotonic equity functions are more appropriate for certain types of VRP models, and suggest promising avenues for further research.Comment: Accepted Manuscrip

    Industrial and Tramp Ship Routing Problems: Closing the Gap for Real-Scale Instances

    Full text link
    Recent studies in maritime logistics have introduced a general ship routing problem and a benchmark suite based on real shipping segments, considering pickups and deliveries, cargo selection, ship-dependent starting locations, travel times and costs, time windows, and incompatibility constraints, among other features. Together, these characteristics pose considerable challenges for exact and heuristic methods, and some cases with as few as 18 cargoes remain unsolved. To face this challenge, we propose an exact branch-and-price (B&P) algorithm and a hybrid metaheuristic. Our exact method generates elementary routes, but exploits decremental state-space relaxation to speed up column generation, heuristic strong branching, as well as advanced preprocessing and route enumeration techniques. Our metaheuristic is a sophisticated extension of the unified hybrid genetic search. It exploits a set-partitioning phase and uses problem-tailored variation operators to efficiently handle all the problem characteristics. As shown in our experimental analyses, the B&P optimally solves 239/240 existing instances within one hour. Scalability experiments on even larger problems demonstrate that it can optimally solve problems with around 60 ships and 200 cargoes (i.e., 400 pickup and delivery services) and find optimality gaps below 1.04% on the largest cases with up to 260 cargoes. The hybrid metaheuristic outperforms all previous heuristics and produces near-optimal solutions within minutes. These results are noteworthy, since these instances are comparable in size with the largest problems routinely solved by shipping companies

    Hybrid Metaheuristics for the Clustered Vehicle Routing Problem

    Get PDF
    The Clustered Vehicle Routing Problem (CluVRP) is a variant of the Capacitated Vehicle Routing Problem in which customers are grouped into clusters. Each cluster has to be visited once, and a vehicle entering a cluster cannot leave it until all customers have been visited. This article presents two alternative hybrid metaheuristic algorithms for the CluVRP. The first algorithm is based on an Iterated Local Search algorithm, in which only feasible solutions are explored and problem-specific local search moves are utilized. The second algorithm is a Hybrid Genetic Search, for which the shortest Hamiltonian path between each pair of vertices within each cluster should be precomputed. Using this information, a sequence of clusters can be used as a solution representation and large neighborhoods can be efficiently explored by means of bi-directional dynamic programming, sequence concatenations, by using appropriate data structures. Extensive computational experiments are performed on benchmark instances from the literature, as well as new large scale ones. Recommendations on promising algorithm choices are provided relatively to average cluster size.Comment: Working Paper, MIT -- 22 page
    corecore