3,696 research outputs found

    Retrospective Interference Alignment for the MIMO Interference Broadcast Channel

    Full text link
    The degrees of freedom (DoF) of the multiple-input multiple-output (MIMO) Interference Broadcast Channel (IBC) with 2 cells and 2 users per cell are investigated when only delayed channel state information is available at the transmitter side (delayed CSIT). Retrospective Interference Alignment has shown the benefits in terms of DoF of exploiting delayed CSIT for interference, broadcast and also for the IBC. However, previous works studying the IBC with delayed CSIT do not exploit the fact that the users of each cell are served by a common transmitter. This work presents a four-phase precoding strategy taking this into consideration. Assuming that transmitters and receivers are equipped with M,NM,N antennas, respectively, new DoF inner bounds are proposed, outperforming the existing ones for ρ=MN>2.6413\rho = \frac{M}{N} > 2.6413.Comment: 1 copyright page + 5 paper pages + 3 appendix pages, Submitted to IEEE ISIT 201

    Retrospective Interference Alignment for the 3-user MIMO Interference Channel with delayed CSIT

    Full text link
    The degrees of freedom (DoF) of the 3-user multiple input multiple output interference channel (3-user MIMO IC) are investigated where there is delayed channel state information at the transmitters (dCSIT). We generalize the ideas of Maleki et al. about {\it Retrospective Interference Alignment (RIA)} to be applied to the MIMO IC, where transmitters and receivers are equipped with (M,N)(M,N) antennas, respectively. We propose a two-phase transmission scheme where the number of slots per phase and number of transmitted symbols are optimized by solving a maximization problem. Finally, we review the existing achievable DoF results in the literature as a function of the ratio between transmitting and receiving antennas ρ=M/N\rho=M/N. The proposed scheme improves all other strategies when ρ∈(12,3132]\rho \in \left(\frac{1}{2}, \frac{31}{32} \right].Comment: Draft version of the accepted manuscript at IEEE ICASSP 1

    On the Degrees of freedom of the K-user MISO Interference Channel with imperfect delayed CSIT

    Full text link
    This work investigates the degrees of freedom (DoF) of the K-user multiple-input single-output (MISO) interference channel (IC) with imperfect delayed channel state information at the transmitters (dCSIT). For this setting, new DoF inner bonds are provided, and benchmarked with cooperation-based outer bounds. The achievability result is based on a precoding scheme that aligns the interfering received signals through time, exploiting the concept of Retrospective Interference Alignment (RIA). The proposed approach outperforms all previous known schemes. Furthermore, we study the proposed scheme under channel estimation errors (CEE) on the reported dCSIT, and derive a closed-form expression for the achievable DoF with imperfect dCSIT.Comment: Draft version of the accepted manuscript at IEEE ICASSP 1

    Achievable DoF-delay trade-offs for the K-user MIMO interference channel with delayed CSIT

    Get PDF
    ©2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.The degrees of freedom (DoFs) of the K-user multiple-input multiple-output (MIMO) interference channel are studied when perfect, but delayed channel state information is available at the transmitter side (delayed CSIT). Recent works have proposed schemes improving the DoF knowledge of the interference channel, but at the cost of developing transmission involving many channel uses (long delay), thus increasing the complexity at both transmitter and receiver side. This paper proposes three linear precoding strategies, limited to at most three phases, based on the concept of interference alignment, and built upon three main ingredients: delayed CSIT precoding, user scheduling, and redundancy transmission. In this respect, the interference alignment is realized by exploiting delayed CSIT to align the interference at the non-intended receivers along the space-time domain. Moreover, a new framework is proposed where the number of transmitted symbols and duration of the phases is obtained as the solution of a maximization problem, and enabling the introduction of complexity constraints, which allows deriving the achievable DoF as a function of the transmission delay, i.e., the achievable DoF-delay trade-off. Finally, the latter part of this paper settles that the assumption of time-varying channels common along all the literature on delayed CSIT is indeed unnecessary.Peer ReviewedPostprint (author's final draft

    Mechanical stress induced by electromagnetic forces on wire bonds of high power modules

    Get PDF
    This paper concerns the analytical determination and experimental characterization of electromagnetic forces exerted on high power IGBT wire bonds

    Quality Measures of Parameter Tuning for Aggregated Multi-Objective Temporal Planning

    Get PDF
    Parameter tuning is recognized today as a crucial ingredient when tackling an optimization problem. Several meta-optimization methods have been proposed to find the best parameter set for a given optimization algorithm and (set of) problem instances. When the objective of the optimization is some scalar quality of the solution given by the target algorithm, this quality is also used as the basis for the quality of parameter sets. But in the case of multi-objective optimization by aggregation, the set of solutions is given by several single-objective runs with different weights on the objectives, and it turns out that the hypervolume of the final population of each single-objective run might be a better indicator of the global performance of the aggregation method than the best fitness in its population. This paper discusses this issue on a case study in multi-objective temporal planning using the evolutionary planner DaE-YAHSP and the meta-optimizer ParamILS. The results clearly show how ParamILS makes a difference between both approaches, and demonstrate that indeed, in this context, using the hypervolume indicator as ParamILS target is the best choice. Other issues pertaining to parameter tuning in the proposed context are also discussed.Comment: arXiv admin note: substantial text overlap with arXiv:1305.116
    • …
    corecore