1,290 research outputs found
Posterior shape models
We present a method to compute the conditional distribution of a statistical shape model given partial data. The result is a "posterior shape model", which is again a statistical shape model of the same form as the original model. This allows its direct use in the variety of algorithms that include prior knowledge about the variability of a class of shapes with a statistical shape model. Posterior shape models then provide a statistically sound yet easy method to integrate partial data into these algorithms. Usually, shape models represent a complete organ, for instance in our experiments the femur bone, modeled by a multivariate normal distribution. But because in many application certain parts of the shape are known a priori, it is of great interest to model the posterior distribution of the whole shape given the known parts. These could be isolated landmark points or larger portions of the shape, like the healthy part of a pathological or damaged organ. However, because for most shape models the dimensionality of the data is much higher than the number of examples, the normal distribution is singular, and the conditional distribution not readily available. In this paper, we present two main contributions: First, we show how the posterior model can be efficiently computed as a statistical shape model in standard form and used in any shape model algorithm. We complement this paper with a freely available implementation of our algorithms. Second, we show that most common approaches put forth in the literature to overcome this are equivalent to probabilistic principal component analysis (PPCA), and Gaussian Process regression. To illustrate the use of posterior shape models, we apply them on two problems from medical image analysis: model-based image segmentation incorporating prior knowledge from landmarks, and the prediction of anatomically correct knee shapes for trochlear dysplasia patients, which constitutes a novel medical application. Our experiments confirm that the use of conditional shape models for image segmentation improves the overall segmentation accuracy and robustness
Finite element surface registration incorporating curvature, volume preservation, and statistical model information
We present a novel method for nonrigid registration of 3D surfaces and images. The method can be used to register surfaces by means of their distance images, or to register medical images directly. It is formulated as a minimization problem of a sum of several terms representing the desired properties of a registration result: smoothness, volume preservation, matching of the surface, its curvature, and possible other feature images, as well as consistency with previous registration results of similar objects, represented by a statistical deformation model. While most of these concepts are already known, we present a coherent continuous formulation of these constraints, including the statistical deformation model. This continuous formulation renders the registration method independent of its discretization. The finite element discretization we present is, while independent of the registration functional, the second main contribution of this paper. The local discontinuous Galerkin method has not previously been used in image registration, and it provides an efficient and general framework to discretize each of the terms of our functional. Computational efficiency and modest memory consumption are achieved thanks to parallelization and locally adaptive mesh refinement. This allows for the first time the use of otherwise prohibitively large 3D statistical deformation models
Gaussian Process Morphable Models
Statistical shape models (SSMs) represent a class of shapes as a normal
distribution of point variations, whose parameters are estimated from example
shapes. Principal component analysis (PCA) is applied to obtain a
low-dimensional representation of the shape variation in terms of the leading
principal components. In this paper, we propose a generalization of SSMs,
called Gaussian Process Morphable Models (GPMMs). We model the shape variations
with a Gaussian process, which we represent using the leading components of its
Karhunen-Loeve expansion. To compute the expansion, we make use of an
approximation scheme based on the Nystrom method. The resulting model can be
seen as a continuous analogon of an SSM. However, while for SSMs the shape
variation is restricted to the span of the example data, with GPMMs we can
define the shape variation using any Gaussian process. For example, we can
build shape models that correspond to classical spline models, and thus do not
require any example data. Furthermore, Gaussian processes make it possible to
combine different models. For example, an SSM can be extended with a spline
model, to obtain a model that incorporates learned shape characteristics, but
is flexible enough to explain shapes that cannot be represented by the SSM. We
introduce a simple algorithm for fitting a GPMM to a surface or image. This
results in a non-rigid registration approach, whose regularization properties
are defined by a GPMM. We show how we can obtain different registration
schemes,including methods for multi-scale, spatially-varying or hybrid
registration, by constructing an appropriate GPMM. As our approach strictly
separates modelling from the fitting process, this is all achieved without
changes to the fitting algorithm. We show the applicability and versatility of
GPMMs on a clinical use case, where the goal is the model-based segmentation of
3D forearm images
Channel bed adjustment of a large sand-gravel bed river to an intermitted sediment sink
River morphodynamics and sediment transportRiver morphology and morphodynamic
Empirically Analyzing the Effect of Dataset Biases on Deep Face Recognition Systems
It is unknown what kind of biases modern in the wild face datasets have
because of their lack of annotation. A direct consequence of this is that total
recognition rates alone only provide limited insight about the generalization
ability of a Deep Convolutional Neural Networks (DCNNs). We propose to
empirically study the effect of different types of dataset biases on the
generalization ability of DCNNs. Using synthetically generated face images, we
study the face recognition rate as a function of interpretable parameters such
as face pose and light. The proposed method allows valuable details about the
generalization performance of different DCNN architectures to be observed and
compared. In our experiments, we find that: 1) Indeed, dataset bias has a
significant influence on the generalization performance of DCNNs. 2) DCNNs can
generalize surprisingly well to unseen illumination conditions and large
sampling gaps in the pose variation. 3) Using the presented methodology we
reveal that the VGG-16 architecture outperforms the AlexNet architecture at
face recognition tasks because it can much better generalize to unseen face
poses, although it has significantly more parameters. 4) We uncover a main
limitation of current DCNN architectures, which is the difficulty to generalize
when different identities to not share the same pose variation. 5) We
demonstrate that our findings on synthetic data also apply when learning from
real-world data. Our face image generator is publicly available to enable the
community to benchmark other DCNN architectures.Comment: Accepted to CVPR 2018 Workshop on Analysis and Modeling of Faces and
Gestures (AMFG
Linear Object Classes and Image Synthesis from a Single Example Image
The need to generate new views of a 3D object from a single real image arises in several fields, including graphics and object recognition. While the traditional approach relies on the use of 3D models, we have recently introduced techniques that are applicable under restricted conditions but simpler. The approach exploits image transformations that are specific to the relevant object class and learnable from example views of other "prototypical" objects of the same class. In this paper, we introduce such a new technique by extending the notion of linear class first proposed by Poggio and Vetter. For linear object classes it is shown that linear transformations can be learned exactly from a basis set of 2D prototypical views. We demonstrate the approach on artificial objects and then show preliminary evidence that the technique can effectively "rotate" high- resolution face images from a single 2D view
Morphable Face Models - An Open Framework
In this paper, we present a novel open-source pipeline for face registration
based on Gaussian processes as well as an application to face image analysis.
Non-rigid registration of faces is significant for many applications in
computer vision, such as the construction of 3D Morphable face models (3DMMs).
Gaussian Process Morphable Models (GPMMs) unify a variety of non-rigid
deformation models with B-splines and PCA models as examples. GPMM separate
problem specific requirements from the registration algorithm by incorporating
domain-specific adaptions as a prior model. The novelties of this paper are the
following: (i) We present a strategy and modeling technique for face
registration that considers symmetry, multi-scale and spatially-varying
details. The registration is applied to neutral faces and facial expressions.
(ii) We release an open-source software framework for registration and
model-building, demonstrated on the publicly available BU3D-FE database. The
released pipeline also contains an implementation of an Analysis-by-Synthesis
model adaption of 2D face images, tested on the Multi-PIE and LFW database.
This enables the community to reproduce, evaluate and compare the individual
steps of registration to model-building and 3D/2D model fitting. (iii) Along
with the framework release, we publish a new version of the Basel Face Model
(BFM-2017) with an improved age distribution and an additional facial
expression model
Subdivision Shell Elements with Anisotropic Growth
A thin shell finite element approach based on Loop's subdivision surfaces is
proposed, capable of dealing with large deformations and anisotropic growth. To
this end, the Kirchhoff-Love theory of thin shells is derived and extended to
allow for arbitrary in-plane growth. The simplicity and computational
efficiency of the subdivision thin shell elements is outstanding, which is
demonstrated on a few standard loading benchmarks. With this powerful tool at
hand, we demonstrate the broad range of possible applications by numerical
solution of several growth scenarios, ranging from the uniform growth of a
sphere, to boundary instabilities induced by large anisotropic growth. Finally,
it is shown that the problem of a slowly and uniformly growing sheet confined
in a fixed hollow sphere is equivalent to the inverse process where a sheet of
fixed size is slowly crumpled in a shrinking hollow sphere in the frictionless,
quasi-static, elastic limit.Comment: 20 pages, 12 figures, 1 tabl
- …