92 research outputs found

    Health monitoring of federated future internet experimentation facilities

    Get PDF
    The federation of Future Internet testbeds as envisaged by the Fed4FIRE project is a complex undertaking. It combines a large number of existing, independent testbeds in a single federation, and presents them to the experimenter as if it were a single infrastructure. Operating and using such an infrastructure requires a profound knowledge of the status of the health of the underlying independent systems. Inspired by network monitoring techniques used to operate the Internet today, this paper considers how a centralized health monitoring system can be set up in a federated environment of Future Internet Experimentation Facilities. We show why it is a vital tool for experimenters and First Level Support in the federation, which health monitoring information must be captured, and how this information can be displayed most appropriately

    CROEQS: Contemporaneous Role Ontology-based Expanded Query Search: implementation and evaluation

    Get PDF
    Searching annotated items in multimedia databases becomes increasingly important. The traditional approach is to build a search engine based on textual metadata. However, in manually annotated multimedia databases, the conceptual level of what is searched for might differ from the high-levelness of the annotations of the items. To address this problem, we present CROEQS, a semantically enhanced search engine. It allows the user to query the annotated persons not only on their name, but also on their roles at the time the multimedia item was broadcast. We also present the ontology used to expand such queries: it allows us to semantically represent the domain knowledge on people fulfilling a role during a temporal interval in general, and politicians holding a political office specifically. The evaluation results show that query expansion using data retrieved from an ontology considerably filters the result set, although there is a performance penalty

    Named entity recognition on flemish audio-visual and news-paper archives

    Get PDF

    Constructing a no-reference H.264/AVC bitstream-based video quality metric using genetic programming-based symbolic regression

    Get PDF
    In order to ensure optimal quality of experience toward end users during video streaming, automatic video quality assessment becomes an important field-of-interest to video service providers. Objective video quality metrics try to estimate perceived quality with high accuracy and in an automated manner. In traditional approaches, these metrics model the complex properties of the human visual system. More recently, however, it has been shown that machine learning approaches can also yield competitive results. In this paper, we present a novel no-reference bitstream-based objective video quality metric that is constructed by genetic programming-based symbolic regression. A key benefit of this approach is that it calculates reliable white-box models that allow us to determine the importance of the parameters. Additionally, these models can provide human insight into the underlying principles of subjective video quality assessment. Numerical results show that perceived quality can be modeled with high accuracy using only parameters extracted from the received video bitstream

    Comparing objective visual quality impairment detection in 2D and 3D video sequences

    Get PDF
    The skill level of teleoperator plays a key role in the telerobotic operation. However, plenty of experiments are required to evaluate the skill level in a conventional assessment. In this paper, a novel brain-based method of skill assessment is introduced, and the relationship between the teleoperator's brain states and skill level is first investigated based on a kernel canonical correlation analysis (KCCA) method. The skill of teleoperator (SoT) is defined by a statistic method using the cumulative probability function (CDF). Five indicators are extracted from the electroencephalo-graph (EEG) of the teleoperator to represent the brain states during the telerobotic operation. By using the KCCA algorithm in modeling the relationship between the SoT and the brain states, the correlation has been proved. During the telerobotic operation, the skill level of teleoperator can be well predicted through the brain states. © 2013 IEEE.Link_to_subscribed_fulltex
    • ‚Ķ