312 research outputs found
Imbalances between matrix metalloproteinases (MMPs) and tissue inhibitor of metalloproteinases (TIMPs) in maternal serum during preterm labor
Background: Matrix metalloproteinases (MMPs) are involved in remodeling of the extracellular matrix (ECM) during pregnancy and parturition. Aberrant ECM degradation by MMPs or an imbalance between MMPs and their tissue inhibitors (TIMPs) have been implicated in the pathogenesis of preterm labor, however few studies have investigated MMPs or TIMPs in maternal serum. Therefore, the purpose of this study was to determine serum concentrations of MMP-3, MMP-9 and all four TIMPs as well as MMP:TIMP ratios during term and preterm labor.
Methods: A case control study with 166 singleton pregnancies, divided into four groups: (1) women with preterm birth, delivering before 34 weeks (PTB); (2) gestational age (GA) matched controls, not in preterm labor; (3) women at term in labor and (4) at term not in labor. MMP and TIMP concentrations were measured using Luminex technology.
Results: MMP-9 and TIMP-4 concentrations were higher in women with PTB vs. GA matched controls (resp. p = 0.01 and p<0.001). An increase in MMP-9:TIMP-1 and MMP-9:TIMP-2 ratio was observed in women with PTB compared to GA matched controls (resp. p = 0.02 and p<0.001) as well as compared to women at term in labor (resp. p = 0.006 and p<0.001). Multiple regression results with groups recoded as three key covariates showed significantly higher MMP-9 concentrations, higher MMP-9:TIMP-1 and MMP-9:TIMP-2 ratios and lower TIMP-1 and -2 concentrations for preterm labor. Significantly higher MMP-9 and TIMP-4 concentrations and MMP-9:TIMP-2 ratios were observed for labor.
Conclusions: Serum MMP-9:TIMP-1 and MMP-9:TIMP-2 balances are tilting in favor of gelatinolysis during preterm labor. TIMP-1 and -2 concentrations were lower in preterm gestation, irrespective of labor, while TIMP-4 concentrations were raised in labor. These observations suggest that aberrant serum expression of MMP:TIMP ratios and TIMPs reflect pregnancy and labor status, providing a far less invasive method to determine enzymes essential in ECM remodeling during pregnancy and parturition
Vpx-independent lentiviral transduction and shRNA-mediated protein knock-down in monocyte-derived dendritic cells
The function of dendritic cells (DCs) in the immune system is based on their ability to sense and present foreign antigens. Powerful tools to research DC function and to apply in cell-based immunotherapy are either silencing or overexpression of genes achieved by lentiviral transduction. To date, efficient lentiviral transduction of DCs or their monocyte derived counterparts (MDDCs) required high multiplicity of infection (MOI) or the exposure to the HIV-2/SIV protein Vpx to degrade viral restriction factor SAM domain and HD domain-containing protein 1 (SAMHD1). Here we present a Vpx-independent method for efficient (>95%) transduction of MDDCs at lower MOI. The protocol can be used both for ectopic gene expression and knock-down. Introducing shRNA targeting viral entry receptor CD4 and restriction factor SAMHD1 into MDDCs resulted in down-regulation of targeted proteins and, consequently, expected impact on HIV infection. This protocol for MDDCs transduction is robust and free of the potential risk arising from the use of Vpx which creates a virus infection-prone environment, potentially dangerous in clinical setting
A detailed inventory of DNA copy number alterations in four commonly used Hodgkin's lymphoma cell lines
Background and Objectives Classical Hodgkin's lymphoma (cHL) is a common malignant lymphoma characterized by the presence of large, usually multinucleated malignant Hodgkin and Reed Sternberg (HRS) cells which are thought to be derived from germinal center B-cells. In cHL, the HRS cells constitute less than 1% of the tumor volume; consequently the profile of genetic aberrations in cHL is still poorly understood.
Design and Methods In this study, we subjected four commonly used cHL cell lines to array comparative genomic hybridization (aCGH) in order to delineate known chromosomal aberrations in more detail and to search for small hitherto undetected genomic imbalances.
Results The aCGH profiles of the four cell lines tested confirmed the complex patterns of rearrangements previously demonstrated with multicolor fluorescence in situ hybridization and chromosomal CGH (cCGH). Importantly, aCGH allowed a much more accurate delineation of imbalances as compared to previous studies performed at a chromosomal level of resolution. Furthermore, we detected 35 hitherto undetected aberrations including a homozygous deletion of chromosomal region 15q26.2 in the cell line HDLM2 encompasing RGMA and CHD2 and an amplification of the STAT6 gene in cell line L1236 leading to STAT6 overexpression. Finally, in cell line KM-H2 we found a 2.35 Mb deletion at 16q12.1 putatively defining a small critical region for the recurrent 16q deletion in cHL. This region contains the CYLD gene, a known suppressor gene of the NF-kappa B pathway.
Interpretation and Conclusions aCGH was performed on four cHL cell lines leading to the improved delineation of known chromosomal imbalances and the detection of 35 hitherto undetected aberrations. More specifically, our results highlight STAT6 as a potential transcriptional target and identified RGMA, CHD2 and CYLD as candidate tumor suppressors in cHL
The Nef-Infectivity Enigma: Mechanisms of Enhanced Lentiviral Infection
The Nef protein is an essential factor for lentiviral pathogenesis in humans and other simians. Despite a multitude of functions attributed to this protein, the exact role of Nef in disease progression remains unclear. One of its most intriguing functions is the ability of Nef to enhance the infectivity of viral particles. In this review we will discuss current insights in the mechanism of this well-known, yet poorly understood Nef effect. We will elaborate on effects of Nef, on both virion biogenesis and the early stage of the cellular infection, that might be involved in infectivity enhancement. In addition, we provide an overview of different HIV-1 Nef domains important for optimal infectivity and briefly discuss some possible sources of the frequent discrepancies in the field. Hereby we aim to contribute to a better understanding of this highly conserved and therapeutically attractive Nef function
Prevalence of cytoplasmic actin mutations in diffuse large B-cell lymphoma and multiple myeloma : a functional assessment based on actin three-dimensional structures
Mutations in actins have been linked to several developmental diseases. Their occurrence across different cancers has, however, not been investigated. Using the cBioPortal database we show that human actins are infrequently mutated in patient samples of various cancers types. Nevertheless, ranking these studies by mutational frequency suggest that some have a higher percentage of patients with ACTB and ACTG1 mutations. Within studies on hematological cancers, mutations in ACTB and ACTG1 are associated with lymphoid cancers since none have currently been reported in myeloid cancers. Within the different types of lymphoid cancers ACTB mutations are most frequent in diffuse large B-cell lymphoma (DLBCL) and ACTG1 mutations in multiple myeloma. We mapped the ACTB and ACTG1 mutations found in these two cancer types on the 3D-structure of actin showing they are in regions important for actin polymer formation or binding to myosin. The potential effects of the mutations on actin properties imply that mutations in cytoplasmic actins deserve dedicated research in DLBCL and multiple myeloma
Lipoprotein lipase SNPs rs13702 and rs301 correlate with clinical outcome in chronic lymphocytic leukemia patients
Chronic lymphocytic leukemia (CLL) is the most common leukemia in the Western world and is characterized by a heterogeneous clinical course. This variability in clinical course has spiked the search for prognostic markers able to predict patient evolution at the moment of diagnosis. Markers demonstrated to be of value are the mutation status of the immunoglobulin heavy chain variable region genes (IGHV) and lipoprotein lipase (LPL) expression. High LPL mRNA expression has been associated with short treatment free (TFS) and decreased overall survival (OS) in CLL. The LPL SNPs rs301 (T<C), rs328 (C<G) and rs13702 (T<C) have been associated with various metabolic disorders, but the association with CLL evolution is unknown. Here, in a cohort of 248 patients, we show that patients with the LPL SNP rs13702 wild-type T/T genotype had significantly shorter OS than patients with C/C and T/C genotypes (median time until CLL related death: 90 and 156 months respectively, p=0.008). The same was observed for LPL SNP rs301 (median time until CLL related death T/T: 102 and C/C, T/C: 144 months, p=0.03). Both SNPs rs301 and rs13702 were significantly associated with each other and notably, no association was found between IGHV status and presence of the SNP genotypes, indicating that these LPL SNPs are reliable prognostic markers that could add extra prognostic and predictive information to classical markers and help to improve the management of CLL
Coumarin reduces virulence and biofilm formation in Pseudomonas aeruginosa by affecting quorum sensing, type III secretion and C-di-GMP levels
As one of the major pathogens in wound infections, Pseudomonas aeruginosa produces several virulence factors and forms biofilms; these processes are under the regulation of various quorum sensing (QS) systems. Therefore, QS has been regarded as a promising target to treat P. aeruginosa infections. In the present study, we evaluated the effect of the plant-derived QS inhibitor coumarin on P. aeruginosa biofilms and virulence. Coumarin inhibited QS in the P. aeruginosa QSIS2 biosensor strain, reduced protease and pyocyanin production, and inhibited biofilm formation in microtiter plates in different P. aeruginosa strains. The effects of coumarin in inhibiting biofilm formation in an in vitro wound model and reducing P. aeruginosa virulence in the Lucilia sericata infection model were strain-dependent. Transcriptome analysis revealed that several key genes involved in the las, rhl, Pseudomonas quinolone signal (PQS), and integrated QS (IQS) systems were downregulated in coumarin-treated biofilms of P. aeruginosa PAO1. Coumarin also changed the expression of genes related to type III secretion and cyclic diguanylate (c-di-GMP) metabolism. The cellular c-di-GMP level of P. aeruginosa PAO1 and recent clinical P. aeruginosa strains was significantly reduced by coumarin. These results provide new evidence for the possible application of coumarin as an anti-biofilm and anti-virulence agent against P. aeruginosa in wound infections
- …