3 research outputs found

    Effects of a solid lipid curcumin particle formulation on chronic activation of microglia and astroglia in the GFAP-IL6 mouse model

    Get PDF
    Chronic glial activation is characterized by increased numbers of activated glial cells, secreting free radicals and cytotoxic cytokines, subsequently causing neuronal damage. In order to investigate the anti-inflammatory activity of Longvida® Optimised Curcumin (LC), we fed 500 ppm of LC to 2-month-old wild type and GFAP-IL6 mice for 6 months. LC feeding led to a significant reduction in the number of Iba-1+ microglia by 26% in the hippocampus and by 48% in the cerebellum, GFAP+ astrocytes by 30%, and TSPO+ cells by 24% in the hippocampus and by 31% in the cerebellum of the GFAP-IL6 mice. The morphology of the cells was assessed and LC significantly decreased the dendritic length of microglia and the convex area, convex perimeter, dendritic length, nodes and number of processes of astrocytes in the hippocampus while decreasing the soma area and perimeter in the cerebellum, in LC-fed GFAP-IL6 mice. In addition, LC feeding increased pre- and postsynaptic protein levels and improved balance measured by Rotarod. Together, these data suggest that LC is able to attenuate the inflammatory pathology and ameliorate neurodegeneration and motor deficits in GFAP-IL6 mice. For patients with neuro-inflammatory disorders, LC might potentially reverse the detrimental effects of chronic glial activation

    [In Press] Pharmacological considerations for treating neuroinflammation with curcumin in Alzheimer's disease

    No full text
    Prof. Dr. Peter Riederer, the former Head of the Neurochemistry Department of the Psychiatry and Psychotherapy Clinic at the University of Würzburg (Germany), has been one of the pioneers of research into oxidative stress in Parkinson's and Alzheimer’s disease (AD). This review will outline how his scientific contribution to the field has opened a new direction for AD treatment beyond “plaques and tangles”. In the 1990s, Prof. Riederer was one of the first scientists who proposed oxidative stress and neuroinfammation as one of the major contributors to Alzheimer’s disease, despite the overwhelming support for the “amyloid-only” hypothesis at the time, which postulated that the sole and only cause of AD is β-amyloid. His group also highlighted the role of advanced glycation end products, sugar and dicarbonyl-derived protein modifcations, which crosslink proteins into insoluble aggregates and potent pro-infammatory activators of microglia. For the treatment of chronic neuroinfammation, he and his group suggested that the most appropriate drug class would be cytokine-suppressive anti-infammatory drugs (CSAIDs) which have a broader anti-infammatory action range than conventional non-steroidal anti-infammatory drugs. One of the most potent CSAIDs is curcumin, but it suffers from a variety of pharmacokinetic disadvantages including low bioavailability, which might have tainted many human clinical trials. Although a variety of oral formulations with increased bioavailability have been developed, curcumin’s absorption after oral delivery is too low to reach therapeutic concentrations in the micromolar range in the systemic circulation and the brain. This review will conclude with evidence that rectally applied suppositories might be the best alternatives to oral medications, as this route will be able to evade first-pass metabolism in the liver and achieve high concentrations of curcumin in plasma and tissues, including the brain

    Identification of tetragocarbone C and sideroxylin as the most potent anti-inflammatory components of Syncarpia glomulifera

    No full text
    In contrast to ancient Western and Asian cultures, medicinal plants of the Aboriginal and Torres Strait Islanders in Australia have not been as intensively studied for their molecular composition and molecular bioactivity. Syncarpia glomulifera subsp. glomulifera is a species in the plant family Myrtaceae. The resin of the plant has been traditionally used by the D'harawal people of Western Sydney to heal inflamed sores and ulcers. Hence, the anti-inflammatory activity of its leaf extract was investigated in RAW 264.7 macrophage and N11 microglia cell lines to isolate and identify the most active compounds. One new compound, tetragocarbone C, and three known compounds, tetragocarbone B, sideroxylin, and lumaflavanone A showed potent anti-inflammatory activity by downregulating nitric oxide and TNF-alpha production in LPS and IFN-gamma stimulated cells. Except for the less potent tetragocarbone B, all compounds had an IC50 value (for nitric oxide downregulation) of <10mug/mL and moderate cytotoxicity in both cell lines. The molecular targets along pro-inflammatory signaling pathways were further investigated in RAW 264.7 cells. All four compounds suppressed phosphorylation of ERK, c-Jun, and limited the phosphorylation of STAT-1 and STAT-3 in response to LPS and IFN-gamma activation. The four compounds also suppressed NF-kappaB activation by preventing the translocation of the p65 subunit into the nucleus. Collectively, these findings suggest that the compounds isolated from Syncarpia glomulifera, especially tetragocarbone C and sideroxylin are promising anti-inflammatory agents, and could be further investigated for the treatment of diseases characterized by chronic inflammation
    corecore