6,858 research outputs found

    Disjunctive bases: normal forms and model theory for modal logics

    Get PDF
    We present the concept of a disjunctive basis as a generic framework for normal forms in modal logic based on coalgebra. Disjunctive bases were defined in previous work on completeness for modal fixpoint logics, where they played a central role in the proof of a generic completeness theorem for coalgebraic mu-calculi. Believing the concept has a much wider significance, here we investigate it more thoroughly in its own right. We show that the presence of a disjunctive basis at the "one-step" level entails a number of good properties for a coalgebraic mu-calculus, in particular, a simulation theorem showing that every alternating automaton can be transformed into an equivalent nondeterministic one. Based on this, we prove a Lyndon theorem for the full fixpoint logic, its fixpoint-free fragment and its one-step fragment, a Uniform Interpolation result, for both the full mu-calculus and its fixpoint-free fragment, and a Janin-Walukiewicz-style characterization theorem for the mu-calculus under slightly stronger assumptions. We also raise the questions, when a disjunctive basis exists, and how disjunctive bases are related to Moss' coalgebraic "nabla" modalities. Nabla formulas provide disjunctive bases for many coalgebraic modal logics, but there are cases where disjunctive bases give useful normal forms even when nabla formulas fail to do so, our prime example being graded modal logic. We also show that disjunctive bases are preserved by forming sums, products and compositions of coalgebraic modal logics, providing tools for modular construction of modal logics admitting disjunctive bases. Finally, we consider the problem of giving a category-theoretic formulation of disjunctive bases, and provide a partial solution

    Composite video and graphics display for camera viewing systems in robotics and teleoperation

    Get PDF
    A system for real-time video image display for robotics or remote-vehicle teleoperation is described that has at least one robot arm or remotely operated vehicle controlled by an operator through hand-controllers, and one or more television cameras and optional lighting element. The system has at least one television monitor for display of a television image from a selected camera and the ability to select one of the cameras for image display. Graphics are generated with icons of cameras and lighting elements for display surrounding the television image to provide the operator information on: the location and orientation of each camera and lighting element; the region of illumination of each lighting element; the viewed region and range of focus of each camera; which camera is currently selected for image display for each monitor; and when the controller coordinate for said robot arms or remotely operated vehicles have been transformed to correspond to coordinates of a selected or nonselected camera

    Uniform Interpolation for Coalgebraic Fixpoint Logic

    Get PDF
    We use the connection between automata and logic to prove that a wide class of coalgebraic fixpoint logics enjoys uniform interpolation. To this aim, first we generalize one of the central results in coalgebraic automata theory, namely closure under projection, which is known to hold for weak-pullback preserving functors, to a more general class of functors, i.e.; functors with quasi-functorial lax extensions. Then we will show that closure under projection implies definability of the bisimulation quantifier in the language of coalgebraic fixpoint logic, and finally we prove the uniform interpolation theorem

    Strongly Complete Logics for Coalgebras

    Get PDF
    Coalgebras for a functor model different types of transition systems in a uniform way. This paper focuses on a uniform account of finitary logics for set-based coalgebras. In particular, a general construction of a logic from an arbitrary set-functor is given and proven to be strongly complete under additional assumptions. We proceed in three parts. Part I argues that sifted colimit preserving functors are those functors that preserve universal algebraic structure. Our main theorem here states that a functor preserves sifted colimits if and only if it has a finitary presentation by operations and equations. Moreover, the presentation of the category of algebras for the functor is obtained compositionally from the presentations of the underlying category and of the functor. Part II investigates algebras for a functor over ind-completions and extends the theorem of J{\'o}nsson and Tarski on canonical extensions of Boolean algebras with operators to this setting. Part III shows, based on Part I, how to associate a finitary logic to any finite-sets preserving functor T. Based on Part II we prove the logic to be strongly complete under a reasonable condition on T

    Monadic Second-Order Logic and Bisimulation Invariance for Coalgebras

    Get PDF
    Generalizing standard monadic second-order logic for Kripke models, we introduce monadic second-order logic interpreted over coalgebras for an arbitrary set functor. Similar to well-known results for monadic second-order logic over trees, we provide a translation of this logic into a class of automata, relative to the class of coalgebras that admit a tree-like supporting Kripke frame. We then consider invariance under behavioral equivalence of formulas; more in particular, we investigate whether the coalgebraic mu-calculus is the bisimulation-invariant fragment of monadic second-order logic. Building on recent results by the third author we show that in order to provide such a coalgebraic generalization of the Janin-Walukiewicz Theorem, it suffices to find what we call an adequate uniform construction for the functor. As applications of this result we obtain a partly new proof of the Janin-Walukiewicz Theorem, and bisimulation invariance results for the bag functor (graded modal logic) and all exponential polynomial functors. Finally, we consider in some detail the monotone neighborhood functor, which provides coalgebraic semantics for monotone modal logic. It turns out that there is no adequate uniform construction for this functor, whence the automata-theoretic approach towards bisimulation invariance does not apply directly. This problem can be overcome if we consider global bisimulations between neighborhood models: one of our main technical results provides a characterization of the monotone modal mu-calculus extended with the global modalities, as the fragment of monadic second-order logic for the monotone neighborhood functor that is invariant for global bisimulations

    Expressiveness of the modal mu-calculus on monotone neighborhood structures

    Full text link
    We characterize the expressive power of the modal mu-calculus on monotone neighborhood structures, in the style of the Janin-Walukiewicz theorem for the standard modal mu-calculus. For this purpose we consider a monadic second-order logic for monotone neighborhood structures. Our main result shows that the monotone modal mu-calculus corresponds exactly to the fragment of this second-order language that is invariant for neighborhood bisimulations

    Cloud boundary height measurements using lidar and radar

    Full text link
    Using only lidar or radar an accurate cloud boundary height estimate is often not possible. The combination of lidar and radar can give a reliable cloud boundary estimate in a much broader range of cases. However, also this combination with standard methods still can not measure the cloud boundaries in all cases. This will be illustrated with data from the Clouds and Radiation measurement campaigns, CLARA. Rain is a problem: the radar has problems to measure the small cloud droplets in the presence of raindrops. Similarly, few large particles below cloud base can obscure the cloud base in radar measurements. And the radar reflectivity can be very low at the cloud base of water clouds or in large regions of ice clouds, due to small particles. Multiple cloud layers and clouds with specular reflections can pose problems for lidar. More advanced measurement techniques are suggested to solve these problems. An angle scanning lidar can, for example, detect specular reflections, while using information from the radars Doppler velocity spectrum may help to detect clouds during rain.Comment: Reviewed conference contributio
    corecore