47 research outputs found

    An Exactly Solvable Model for Nonlinear Resonant Scattering

    Full text link
    This work analyzes the effects of cubic nonlinearities on certain resonant scattering anomalies associated with the dissolution of an embedded eigenvalue of a linear scattering system. These sharp peak-dip anomalies in the frequency domain are often called Fano resonances. We study a simple model that incorporates the essential features of this kind of resonance. It features a linear scatterer attached to a transmission line with a point-mass defect and coupled to a nonlinear oscillator. We prove two power laws in the small coupling \to 0 and small nonlinearity \to 0 regime. The asymptotic relation ~ C^4 characterizes the emergence of a small frequency interval of triple harmonic solutions near the resonant frequency of the oscillator. As the nonlinearity grows or the coupling diminishes, this interval widens and, at the relation ~ C^2, merges with another evolving frequency interval of triple harmonic solutions that extends to infinity. Our model allows rigorous computation of stability in the small and limit. In the regime of triple harmonic solutions, those with largest and smallest response of the oscillator are linearly stable and the solution with intermediate response is unstable

    Shock waves in the dissipative Toda lattice

    Full text link
    We consider the propagation of a shock wave (SW) in the damped Toda lattice. The SW is a moving boundary between two semi-infinite lattice domains with different densities. A steadily moving SW may exist if the damping in the lattice is represented by an ``inner'' friction, which is a discrete analog of the second viscosity in hydrodynamics. The problem can be considered analytically in the continuum approximation, and the analysis produces an explicit relation between the SW's velocity and the densities of the two phases. Numerical simulations of the lattice equations of motion demonstrate that a stable SW establishes if the initial velocity is directed towards the less dense phase; in the opposite case, the wave gradually spreads out. The numerically found equilibrium velocity of the SW turns out to be in a very good agreement with the analytical formula even in a strongly discrete case. If the initial velocity is essentially different from the one determined by the densities (but has the correct sign), the velocity does not significantly alter, but instead the SW adjusts itself to the given velocity by sending another SW in the opposite direction.Comment: 10 pages in LaTeX, 5 figures available upon regues

    Scattering Theory for Jacobi Operators with Steplike Quasi-Periodic Background

    Full text link
    We develop direct and inverse scattering theory for Jacobi operators with steplike quasi-periodic finite-gap background in the same isospectral class. We derive the corresponding Gel'fand-Levitan-Marchenko equation and find minimal scattering data which determine the perturbed operator uniquely. In addition, we show how the transmission coefficients can be reconstructed from the eigenvalues and one of the reflection coefficients.Comment: 14 page

    The existence of a real pole-free solution of the fourth order analogue of the Painleve I equation

    Full text link
    We establish the existence of a real solution y(x,T) with no poles on the real line of the following fourth order analogue of the Painleve I equation, x=Ty-({1/6}y^3+{1/24}(y_x^2+2yy_{xx})+{1/240}y_{xxxx}). This proves the existence part of a conjecture posed by Dubrovin. We obtain our result by proving the solvability of an associated Riemann-Hilbert problem through the approach of a vanishing lemma. In addition, by applying the Deift/Zhou steepest-descent method to this Riemann-Hilbert problem, we obtain the asymptotics for y(x,T) as x\to\pm\infty.Comment: 27 pages, 5 figure

    Scattering theory with finite-gap backgrounds: Transformation operators and characteristic properties of scattering data

    Full text link
    We develop direct and inverse scattering theory for Jacobi operators (doubly infinite second order difference operators) with steplike coefficients which are asymptotically close to different finite-gap quasi-periodic coefficients on different sides. We give necessary and sufficient conditions for the scattering data in the case of perturbations with finite second (or higher) moment.Comment: 23 page

    Numerical study of oscillatory regimes in the Kadomtsev-Petviashvili equation

    Full text link
    The aim of this paper is the accurate numerical study of the KP equation. In particular we are concerned with the small dispersion limit of this model, where no comprehensive analytical description exists so far. To this end we first study a similar highly oscillatory regime for asymptotically small solutions, which can be described via the Davey-Stewartson system. In a second step we investigate numerically the small dispersion limit of the KP model in the case of large amplitudes. Similarities and differences to the much better studied Korteweg-de Vries situation are discussed as well as the dependence of the limit on the additional transverse coordinate.Comment: 39 pages, 36 figures (high resolution figures at http://www.mis.mpg.de/preprints/index.html

    Universality of the break-up profile for the KdV equation in the small dispersion limit using the Riemann-Hilbert approach

    Full text link
    We obtain an asymptotic expansion for the solution of the Cauchy problem for the Korteweg-de Vries (KdV) equation in the small dispersion limit near the point of gradient catastrophe (x_c,t_c) for the solution of the dispersionless equation. The sub-leading term in this expansion is described by the smooth solution of a fourth order ODE, which is a higher order analogue to the Painleve I equation. This is in accordance with a conjecture of Dubrovin, suggesting that this is a universal phenomenon for any Hamiltonian perturbation of a hyperbolic equation. Using the Deift/Zhou steepest descent method applied on the Riemann-Hilbert problem for the KdV equation, we are able to prove the asymptotic expansion rigorously in a double scaling limit.Comment: 30 page

    On critical behaviour in systems of Hamiltonian partial differential equations

    Get PDF
    We study the critical behaviour of solutions to weakly dispersive Hamiltonian systems considered as perturbations of elliptic and hyperbolic systems of hydrodynamic type with two components. We argue that near the critical point of gradient catastrophe of the dispersionless system, the solutions to a suitable initial value problem for the perturbed equations are approximately described by particular solutions to the Painlev\ue9-I (PI) equation or its fourth-order analogue P2I. As concrete examples, we discuss nonlinear Schr\uf6dinger equations in the semiclassical limit. A numerical study of these cases provides strong evidence in support of the conjecture
    corecore