3,155 research outputs found
Additional development of large diameter carbon monofilament
The chemical vapor process for preparing a large diameter carbon-base monofilament from a BCl3, Ch4 and H2 gas mixture with a carbon substrate fiber was studied. The effect of reactor geometry, total gas flows and deposition temperature on the tensile strength of the monofilament were investigated. It was noted that consistent results could only be obtained when the carbon substrate fiber was cleaned. The strength of the monofilament was found to depend on the highest temperature and the temperature profile of the monofilament in the reactor. The strength of monofilament produced in the dc and RF reactors were found to be similar and similar alloy compositions in the monofilament were attained when the same gas ratios were used. The tensile strength of the monofilament at 500 C was found to be 60 to 70% of the room temperature tensile strength. No degradation was noted after exposure to molten aluminum
Study of high resistance inorganic coatings on graphite fibers
Coatings made of boron, silicon carbide, silica, and silica-like materials were studied to determine their ability to increase resistance of graphite fibers. The most promising results were attained by chemical vapor depositing silicon carbide on graphite fiber followed by oxidation, and drawing graphite fiber through ethyl silicate followed by appropriate heat treatments. In the silicon carbide coating studies, no degradation of the graphite fibers was observed and resistance values as high as three orders of magnitude higher than that of the uncoated fiber was attained. The strength of a composite fabricated from the coated fiber had a strength which compared favorably with those of composites prepared from uncoated fiber. For the silica-like coated fiber prepared by drawing the graphite fiber through an ethyl silicate solution followed by heating, coated fiber resistances about an order of magnitude greater than that of the uncoated fiber were attained. Composites prepared using these fibers had flexural strengths comparable with those prepared using uncoated fibers, but the shear strengths were lower
Coatings for graphite fibers
Graphite fibers released from composites during burning or an explosion caused shorting of electrical and electronic equipment. Silicon carbide, silica, silicon nitride and boron nitride were coated on graphite fibers to increase their electrical resistances. Resistances as high as three orders of magnitude higher than uncoated fiber were attained without any significant degradation of the substrate fiber. An organo-silicone approach to produce coated fibers with high electrical resistance was also used. Celion 6000 graphite fibers were coated with an organo-silicone compound, followed by hydrolysis and pyrolysis of the coating to a silica-like material. The shear and flexural strengths of composites made from high electrically resistant fibers were considerably lower than the shear and flexural strengths of composites made from the lower electrically resistant fibers. The lower shear strengths of the composites indicated that the coatings on these fibers were weaker than the coating on the fibers which were pyrolyzed at higher temperature
Application of diffusion barriers to the refractory fibers of tungsten, columbium, carbon and aluminum oxide
A radio frequency powered ion-plating system was used to plate protective layers of refractory oxides and carbide onto high strength fiber substrates. Subsequent overplating of these combinations with nickel and titanium was made to determine the effectiveness of such barrier layers in preventing diffusion of the overcoat metal into the fibers with consequent loss of fiber strength. Four substrates, five coatings, and two metal matrix materials were employed for a total of forty material combinations. The substrates were tungsten, niobium, NASA-Hough carbon, and Tyco sapphire. The diffusion-barrier coatings were aluminum oxide, yttrium oxide, titanium carbide, tungsten carbide with 14% cobalt addition, and zirconium carbide. The metal matrix materials were IN 600 nickel and Ti 6/4 titanium. Adhesion of the coatings to all substrates was good except for the NASA-Hough carbon, where flaking off of the oxide coatings in particular was observed
Investigation to develop a method to apply diffusion barrier to high strength fibers
A radio frequency powered ion plating process was used to apply the diffusion barriers of aluminum oxide, yttrium oxide, hafnium oxide and titanium carbide to a substrate tungsten fiber. Each of the coatings was examined as to its effect on both room temperature strength and tensile strength of the base tungsten fiber. The coated fibers were then overcoated with a nickel alloy to become single cell diffusion couples. These diffusion couples were exposed to 1093 C for 24 hours, cycled between room temperature and 1093 C, and given a thermal anneal for 100 hours at 1200 C. Tensile testing and metallographic examinations determined that the hafnium oxide coating produced the best high temperature diffusion barrier for tungsten of the four coatings
Coatings for Graphite Fibers
Several approaches for applying high resistance coatings continuously to graphite yarn were investigated. Two of the most promising approaches involved (1) chemically vapor depositing (CVD) SiC coatings on the surface of the fiber followed by oxidation, and (2) drawing the graphite yarn through an organo-silicone solution followed by heat treatments. In both methods, coated fibers were obtained which exhibited increased electrical resistances over untreated fibers and which were not degraded. This work was conducted in a previous program. In this program, the continuous CVD SiC coating process used on HTS fiber was extended to the coating of HMS, Celion 6000, Celion 12000 and T-300 graphite fiber. Electrical resistances three order of magnitude greater than the uncoated fiber were measured with no significant degradation of the fiber strength. Graphite fibers coated with CVD Si3N4 and BN had resistances greater than 10(exp 6) ohm/cm. Lower pyrolysis temperatures were used in preparing the silica-like coatings also resulting in resistances as high as three orders of magnitude higher than the uncoated fiber. The epoxy matrix composites prepared using these coated fibers had low shear strengths indicating that the coatings were weak
Persistence of small-scale anisotropy of magnetic turbulence as observed in the solar wind
The anisotropy of magnetophydrodynamic turbulence is investigated by using
solar wind data from the Helios 2 spacecraft. We investigate the behaviour of
the complete high-order moment tensors of magnetic field increments and we
compare the usual longitudinal structure functions which have both isotropic
and anisotropic contributions, to the fully anisotropic contribution. Scaling
exponents have been extracted by an interpolation scaling function. Unlike the
usual turbulence in fluid flows, small-scale magnetic fluctuations remain
anisotropic. We discuss the radial dependence of both anisotropy and
intermittency and their relationship.Comment: 7 pages, 2 figures, in press on Europhys. Let
First results from an aging test of a prototype RPC for the LHCb Muon System
Recent results of an aging test performed at the CERN Gamma Irradiation
Facility on a single--gap RPC prototype developed for the LHCb Muon System are
presented. The results are based on an accumulated charge of about 0.45
C/cm, corresponding to about 4 years of LHCb running at the highest
background rate. The performance of the chamber has been studied under several
photon flux values exploiting a muon beam. A degradation of the rate capability
above 1 kHz/cm is observed, which can be correlated to a sizeable increase
of resistivity of the chamber plates. An increase of the chamber dark current
is also observed. The chamber performance is found to fulfill the LHCb
operation requirements.Comment: 6 pages, 9 figures, presented at the International Workshop on Aging
Phenomena in Gaseous Detectors'', DESY-Hamburg (Germany), October 200
Preliminary results of an aging test of RPC chambers for the LHCb Muon System
The preliminary results of an aging test performed at the CERN Gamma
Irradiation Facility on a single--gap RPC prototype developed for the LHCb Muon
System are presented. The results are based on an accumulated charge density of
0.42 C/cm^2, corresponding to about 4 years of LHCb running at the highest
background rate. We observe a rise in the dark current and noise measured with
source off. The current drawn with source on steadily decreased, possibly
indicating an increase of resistivity of the chamber plates. The performance of
the chamber, studied with a muon beam under several photon flux values, is
found to still fulfill the LHCb operation requirements.Comment: 4 pages, 6 figures, presented at RPC2001, VIth Workshop on Resistive
Plate Chambers and Related Detectors, November 26-27 2001, Coimbra, Portuga
- …