62 research outputs found

    Multiple testing with persistent homology

    Full text link
    Multiple hypothesis testing requires a control procedure. Simply increasing simulations or permutations to meet a Bonferroni-style threshold is prohibitively expensive. In this paper we propose a null model based approach to testing for acyclicity, coupled with a Family-Wise Error Rate (FWER) control method that does not suffer from these computational costs. We adapt an False Discovery Rate (FDR) control approach to the topological setting, and show it to be compatible both with our null model approach and with previous approaches to hypothesis testing in persistent homology. By extending a limit theorem for persistent homology on samples from point processes, we provide theoretical validation for our FWER and FDR control methods

    Persistent Cohomology and Circular Coordinates

    Full text link
    Nonlinear dimensionality reduction (NLDR) algorithms such as Isomap, LLE and Laplacian Eigenmaps address the problem of representing high-dimensional nonlinear data in terms of low-dimensional coordinates which represent the intrinsic structure of the data. This paradigm incorporates the assumption that real-valued coordinates provide a rich enough class of functions to represent the data faithfully and efficiently. On the other hand, there are simple structures which challenge this assumption: the circle, for example, is one-dimensional but its faithful representation requires two real coordinates. In this work, we present a strategy for constructing circle-valued functions on a statistical data set. We develop a machinery of persistent cohomology to identify candidates for significant circle-structures in the data, and we use harmonic smoothing and integration to obtain the circle-valued coordinate functions themselves. We suggest that this enriched class of coordinate functions permits a precise NLDR analysis of a broader range of realistic data sets.Comment: 10 pages, 7 figures. To appear in the proceedings of the ACM Symposium on Computational Geometry 200
    • …
    corecore