400 research outputs found

    Generic Continuous Spectrum for Ergodic Schr"odinger Operators

    Full text link
    We consider discrete Schr"odinger operators on the line with potentials generated by a minimal homeomorphism on a compact metric space and a continuous sampling function. We introduce the concepts of topological and metric repetition property. Assuming that the underlying dynamical system satisfies one of these repetition properties, we show using Gordon's Lemma that for a generic continuous sampling function, the associated Schr"odinger operators have no eigenvalues in a topological or metric sense, respectively. We present a number of applications, particularly to shifts and skew-shifts on the torus.Comment: 14 page

    On CrC^r-closing for flows on 2-manifolds

    Full text link
    For some full measure subset B of the set of iet's (i.e. interval exchange transformations) the following is satisfied: Let X be a CrC^r, 1r1\le r\le \infty, vector field, with finitely many singularities, on a compact orientable surface M. Given a nontrivial recurrent point pMp\in M of X, the holonomy map around p is semi-conjugate to an iet E:[0,1)[0,1).E :[0,1) \to [0,1). If EBE\in B then there exists a CrC^r vector field Y, arbitrarily close to X, in the CrC^r-topology, such that Y has a closed trajectory passing through p.Comment: 7 pages, 1 figur

    Recurrence in generic staircases

    Full text link
    The straight-line flow on almost every staircase and on almost every square tiled staircase is recurrent. For almost every square tiled staircase the set of periodic orbits is dense in the phase space

    Integrability of one degree of freedom symplectic maps with polar singularities

    Full text link
    In this paper, we treat symplectic difference equations with one degree of freedom. For such cases, we resolve the relation between that the dynamics on the two dimensional phase space is reduced to on one dimensional level sets by a conserved quantity and that the dynamics is integrable, under some assumptions. The process which we introduce is related to interval exchange transformations.Comment: 10 pages, 2 figure

    A series of coverings of the regular n-gon

    Full text link
    We define an infinite series of translation coverings of Veech's double-n-gon for odd n greater or equal to 5 which share the same Veech group. Additionally we give an infinite series of translation coverings with constant Veech group of a regular n-gon for even n greater or equal to 8. These families give rise to explicit examples of infinite translation surfaces with lattice Veech group.Comment: A missing case in step 1 in the proof of Thm. 1 b was added. (To appear in Geometriae Dedicata.

    Borel-Cantelli sequences

    Get PDF
    A sequence {xn}1\{x_{n}\}_1^\infty in [0,1)[0,1) is called Borel-Cantelli (BC) if for all non-increasing sequences of positive real numbers {an}\{a_n\} with i=1ai=\underset{i=1}{\overset{\infty}{\sum}}a_i=\infty the set k=1n=kB(xn,an))={x[0,1)xnx<anformanyn1}\underset{k=1}{\overset{\infty}{\cap}} \underset{n=k}{\overset{\infty}{\cup}} B(x_n, a_n))=\{x\in[0,1)\mid |x_n-x|<a_n \text{for} \infty \text{many}n\geq1\} has full Lebesgue measure. (To put it informally, BC sequences are sequences for which a natural converse to the Borel-Cantelli Theorem holds). The notion of BC sequences is motivated by the Monotone Shrinking Target Property for dynamical systems, but our approach is from a geometric rather than dynamical perspective. A sufficient condition, a necessary condition and a necessary and sufficient condition for a sequence to be BC are established. A number of examples of BC and not BC sequences are presented. The property of a sequence to be BC is a delicate diophantine property. For example, the orbits of a pseudo-Anosoff IET (interval exchange transformation) are BC while the orbits of a "generic" IET are not. The notion of BC sequences is extended to more general spaces.Comment: 20 pages. Some proofs clarifie

    Invariant sets for discontinuous parabolic area-preserving torus maps

    Get PDF
    We analyze a class of piecewise linear parabolic maps on the torus, namely those obtained by considering a linear map with double eigenvalue one and taking modulo one in each component. We show that within this two parameter family of maps, the set of noninvertible maps is open and dense. For cases where the entries in the matrix are rational we show that the maximal invariant set has positive Lebesgue measure and we give bounds on the measure. For several examples we find expressions for the measure of the invariant set but we leave open the question as to whether there are parameters for which this measure is zero.Comment: 19 pages in Latex (with epsfig,amssymb,graphics) with 5 figures in eps; revised version: section 2 rewritten, new example and picture adde

    Periodic Orbits in Polygonal Billiards

    Full text link
    We review some properties of periodic orbit families in polygonal billiards and discuss in particular a sum rule that they obey. In addition, we provide algorithms to determine periodic orbit families and present numerical results that shed new light on the proliferation law and its variation with the genus of the invariant surface. Finally, we deal with correlations in the length spectrum and find that long orbits display Poisson fluctuations.Comment: 30 pages (Latex) including 11 figure
    corecore