602 research outputs found

    On the complexity and the information content of cosmic structures

    Full text link
    The emergence of cosmic structure is commonly considered one of the most complex phenomena in Nature. However, this complexity has never been defined nor measured in a quantitative and objective way. In this work we propose a method to measure the information content of cosmic structure and to quantify the complexity that emerges from it, based on Information Theory. The emergence of complex evolutionary patterns is studied with a statistical symbolic analysis of the datastream produced by state-of-the-art cosmological simulations of forming galaxy clusters. This powerful approach allows us to measure how many bits of information are necessary to predict the evolution of energy fields in a statistical way, and it offers a simple way to quantify when, where and how the cosmic gas behaves in complex ways. The most complex behaviors are found in the peripheral regions of galaxy clusters, where supersonic flows drive shocks and large energy fluctuations over a few tens of million years. Describing the evolution of magnetic energy requires at least a twice as large amount of bits than for the other energy fields. When radiative cooling and feedback from galaxy formation are considered, the cosmic gas is overall found to double its degree of complexity. In the future, Cosmic Information Theory can significantly increase our understanding of the emergence of cosmic structure as it represents an innovative framework to design and analyze complex simulations of the Universe in a simple, yet powerful way.Comment: 15 pages, 14 figures. MNRAS accepted, in pres

    Do radio relics challenge diffusive shock acceleration?

    Full text link
    Radio relics in galaxy clusters are thought to be associated with powerful shock waves that accelerate particles via diffusive shock acceleration (DSA). Among the particles accelerated by DSA, relativistic protons should outnumber electrons by a large factor. While the relativistic electrons emit synchrotron emission detectable in the radio band, the protons interact with the thermal gas to produce gamma-rays in hadronic interactions. Using simple models for the propagation of shock waves through clusters, the distribution of thermal gas and the efficiency of DSA, we find that the resulting hadronic γ\gamma-ray emission lies very close or above the upper limits from the FERMI data on nearby clusters. This suggests that the relative acceleration efficiency of electrons and protons is at odds with predictions from DSA. The inclusion of re-accelerated "fossil" particles does not seem to solve the problem. Our study highlights a possible tension of the commonly assumed scenario for the formation of radio relics and we discuss possible solutions to the problem.Comment: 7 pages, 3 figures. Updated version to match with the published version in MNRA

    Why are central radio relics so rare?

    Full text link
    In this paper we address the question why cluster radio relics that are connected to shock acceleration, so-called radio gischt, have preferentially been found in the outskirts of galaxy clusters. By identifying merger shock waves in cosmological grid simulations, we explore several prescriptions for relating the energy dissipated in shocks to the energy emitted in the radio band. None of the investigated models produce detectable radio relics within 100-200 kpc from the cluster centre. All models cause > 50 per cent of the detectable relic emission at projected distances > 800 kpc. Central radio relics caused by shocks that propagate along the line-of-sight are rare events for simple geometrical reasons, and they have a low surface brightness making them elusive for current instruments. Our simulations show that the radial distribution of observed relics can be explained by the radial trend of dissipated kinetic energy in shocks, that increases with distance from the cluster centre up until half of the virial radius.Comment: 6 pages, 4 figures. MNRAS accepte

    Turbulence in the ICM from mergers, cool-core sloshing and jets: results from a new multi-scale filtering approach

    Full text link
    We have designed a simple multi-scale method that identifies turbulent motions in hydrodynamical grid simulations. The method does not assmume ant a-priori coherence scale to distinguish laminar and turbulent flows. Instead, the local mean velocity field around each cell is reconstructed with a multi-scale filtering technique, yielding the maximum scale of turbulent eddies by means of iterations. The method is robust, fast and easily applicable to any grid simulation. We present here the application of this technique to the study of spatial and spectral properties of turbulence in the intra cluster medium, measuring turbulent diffusion and anisotropy of the turbulent velocity field for a variety of driving mechanisms: a) accretion of matter in galaxy clusters (simulated with ENZO); b) sloshing motions around cool-cores (simulated with FLASH); c) jet outflows from active galactic nuclei, AGN (simulated with FLASH). The turbulent velocities driven by matter accretion in galaxy clusters are mostly tangential in the inner regions (inside the cluster virial radius) and isotropic in regions close to the virial radius. The same is found for turbulence excited by cool core sloshing, while the jet outflowing from AGN drives mostly radial turbulence motions near its sonic point and beyond. Turbulence leads to a diffusivity in the range =10^29-10^30 cm^2/s in the intra cluster medium. On average, the energetically dominant mechanism of turbulence driving in the intra cluster medium is represented by accretion of matter and major mergers during clusters evolution.Comment: 19 pages, 20 figures. Astronomy and Astrophysics, in pres

    Thermal and non-thermal traces of AGN feedback: results from cosmological AMR simulations

    Full text link
    We investigate the observable effects of feedback from Active Galactic Nuclei (AGN) on non-thermal components of the intracluster medium (ICM). We have modelled feedback from AGN in cosmological simulations with the adaptive mesh refinement code ENZO, investigating three types of feedback that are sometimes called quasar, jet and radio mode. Using a small set of galaxy clusters simulated at high resolution, we model the injection and evolution of Cosmic Rays, as well as their effects on the thermal plasma. By comparing, both, the profiles of thermal gas to observed profiles from the ACCEPT sample, and the secondary gamma-ray emission to the available upper limits from FERMI, we discuss how the combined analysis of these two observables can constrain the energetics and mechanisms of feedback models in clusters. Those modes of AGN feedback that provide a good match to X-ray observations, yield a gamma-ray luminosity resulting from secondary cosmic rays that is about below the available upper limits from FERMI. Moreover, we investigate the injection of turbulent motions into the ICM from AGN, and the detectability of these motions via the analysis of line broadening of the Fe XXIII line. In the near future, deeper observations/upper-limits of non-thermal emissions from galaxy clusters will yield stringent constraints on the energetics and modes of AGN feedback, even at early cosmic epochs.Comment: 24 pages, 20 figures. MNRAS accepted. A version of the paper with higher quality figures can be found at this url: http://www.ira.inaf.it/~vazza/papers/feedback_vazza.pd

    Testing cosmic-ray acceleration with radio relics: a high-resolution study using MHD and tracers

    Full text link
    Weak shocks in the intracluster medium may accelerate cosmic-ray protons and cosmic-ray electrons differently depending on the angle between the upstream magnetic field and the shock normal. In this work, we investigate how shock obliquity affects the production of cosmic rays in high-resolution simulations of galaxy clusters. For this purpose, we performed a magneto-hydrodynamical simulation of a galaxy cluster using the mesh refinement code \enzo. We use Lagrangian tracers to follow the properties of the thermal gas, the cosmic rays and the magnetic fields over time. We tested a number of different acceleration scenarios by varying the obliquity-dependent acceleration efficiencies of protons and electrons, and by examining the resulting hadronic γ\gamma-ray and radio emission. We find that the radio emission does not change significantly if only quasi-perpendicular shocks are able to accelerate cosmic-ray electrons. Our analysis suggests that radio emitting electrons found in relics have been typically shocked many times before z=0z=0. On the other hand, the hadronic γ\gamma-ray emission from clusters is found to decrease significantly if only quasi-parallel shocks are allowed to accelerate cosmic-ray protons. This might reduce the tension with the low upper limits on γ\gamma-ray emission from clusters set by the \textit{Fermi}-satellite.Comment: 16 pages, 17 Figures, accepted for publication by MNRA

    The challenge of detecting intracluster filaments with Faraday Rotation

    Get PDF
    The detection of filaments in the cosmic web will be crucial to distinguish between the possible magnetogenesis scenarios and future large polarization surveys will be able to shed light on their magnetization level. In this work, we use numerical simulations of galaxy clusters to investigate their possible detection. We compute the Faraday Rotation signal in intracluster filaments and compare it to its surrounding environment. We find that the expected big improvement in sensitivity with the SKA-MID will in principle allow the detection of a large fraction of filaments surrounding galaxy clusters. However, the contamination of the intrinsic Faraday Rotation of background polarized sources will represent a big limiter to the number of objects that can be significantly detected. We discuss possible strategies to minimize this effect and increase the chances of detection of the cosmic web with the large statistics expected from future surveys.Comment: 16 pages, accepted to Galaxie

    On the amplification of magnetic fields in cosmic filaments and galaxy clusters

    Full text link
    The amplification of primordial magnetic fields via a small-scale turbulent dynamo during structure formation might be able to explain the observed magnetic fields in galaxy clusters. The magnetisation of more tenuous large-scale structures such as cosmic filaments is more uncertain, as it is challenging for numerical simulations to achieve the required dynamical range. In this work, we present magneto-hydrodynamical cosmological simulations on large uniform grids to study the amplification of primordial seed fields in the intracluster medium (ICM) and in the warm-hot-intergalactic medium (WHIM). In the ICM, we confirm that turbulence caused by structure formation can produce a significant dynamo amplification, even if the amplification is smaller than what is reported in other papers. In the WHIM inside filaments, we do not observe significant dynamo amplification, even though we achieve Reynolds numbers of Re∼200−300R_{\rm e} \sim 200-300. The maximal amplification for large filaments is of the order of ∼100\sim 100 for the magnetic energy, corresponding to a typical field of a few ∼nG\sim \rm nG starting from a primordial weak field of 10−1010^{-10} G (comoving). In order to start a small-scale dynamo, we found that a minimum of ∼102\sim 10^2 resolution elements across the virial radius of galaxy clusters was necessary. In filaments we could not find a minimum resolution to set off a dynamo. This stems from the inefficiency of supersonic motions in the WHIM in triggering solenoidal modes and small-scale twisting of magnetic field structures. Magnetic fields this small will make it hard to detect filaments in radio observations.Comment: MNRAS accepted, in press. 18 pages, 18 Figures. New version to match with the one published in MNRAS. Updated publication list and footnote added to the title as obituary notic
    • …