82 research outputs found

    Nitrous Oxide: Mechanism of Its Antinociceptive Action

    Get PDF
    Nitrous oxide (N2O) is an anesthetic gas known to produce an analgesic effect at sub-anesthetic concentrations. This analgesic property of N2O can be clinically exploited in a broad range of conditions where pain relief is indicated. The mechanism of this analgesic effect was long thought to be nonspecific in nature, but a landmark study by Berkowitz and others in 1976 first implicated an opioid mechanism of action, possibly via N2O-stimulated neuronal release of endogenous opioid peptides to activate opioid receptors. N2O-induced release of opioid peptide has been demonstrated in both in vivo and in vitro preparations. Reversal of N2O-induced antinociception in animals by narcotic antagonists has been reported by a number of laboratories. Subsequent studies have utilized more selective opioid antagonists to identify the opioid receptor subtypes involved in the antinociceptive effect of N2O. Extensive pharmacological testing in the mouse abdominal constriction and rat hot plate paradigms have established that N2O-induced antinociception is mediated by κ-opioid receptors in the former and by µ- and -opioid receptors in the latter. Current studies focus on two recent developments. The poor responsiveness of the DBA/2J mouse strain to N2O has led to pharmacogenetic studies that hope to identify the underlying genetic basis for antinociceptive responsiveness to N2O. Other research suggests an involvement of nitric oxide (NO) in mediating the antinociceptive effects of N2O in both rats and mice

    Increased Metabolic Rate in X-linked Hypophosphatemic Mice

    Get PDF
    Hyp mice are a model for human X-linked hypophosphatemia, the most common form of vitamin D-resistant rickets. It has previously been observed that Hyp mice have a greater food consumption per gram body weight than do normal mice. This led to the search for some alteration in metabolism in Hyp mice. We found that oxygen consumption was significantly higher in Hyp mice than in normal C57BL/6J mice and this was accompanied by an increased percentage of cardiac output being delivered to organs of heat production (liver and skeletal muscle), to the skin, and to bone and a decreased percentage to the gastrointestinal tract of Hyp mice. The increased oxygen consumption in Hyp mice was not associated with increased plasma free T4 levels and was not affected by alterations in plasma phosphate produced by a low phosphate diet. The cause of the increased oxygen consumption is not known, and the role that this change and reported changes in distribution of cardiac output may play in the development of X-linked hypophosphatemia is also unknown. Study of the cardiovascular and thermoregulatory systems in Hyp mice should help increase understanding of the underlying mechanisms of this disease

    Increased mRNA Expression for the α\u3csub\u3e1\u3c/sub\u3e Subunit of the GABA\u3csub\u3eA\u3c/sub\u3e Receptor Following Nitrous Oxide Exposure in Mice

    Get PDF
    The mechanisms by which nitrous oxide (N2O) produces physical dependence and withdrawal seizures are not well understood, but both N2O and ethanol exert some of their effects via the GABAA receptor and several lines of evidence indicate that withdrawal from N2O and ethanol may be produced through similar mechanisms. Expression levels of mRNA transcripts encoding several GABAA receptor subunits change with chronic ethanol exposure and, therefore, we hypothesized that N2O exposure would produce changes in mRNA expression for the α1 subunit. Male, Swiss–Webster mice, 10–12 weeks of age, were exposed for 48 h to either room air or a 75%:25% N2O:O2 environment. Brains were sectioned and mRNA for the a subunit was detected by in situ hybridization using an 35S-labelled cRNA probe. N2O exposure produced a significant increase in expression levels of the α1 subunit mRNA in the cingulate cortex, the CA1/2 region of the hippocampus, the dentate gyrus, the subiculum, the medial septum, and the ventral tegmental area. These results lend support to the hypothesis that N2O effects are produced, at least in part, through the GABAA receptor and that N2O produces these effects through actions in the cingulate cortex, hippocampus, ventral tegmental area and medial septum. These results are also further evidence that ethanol and N2O produce dependence and withdrawal through common mechanisms

    Cyclic Ovarian Hormone Modulation of Supraspinal Δ\u3csup\u3e9\u3c/sup\u3e-tetrahydrocannabinol-induced Antinociception and Cannabinoid Receptor Binding in the Female Rat

    Get PDF
    Estrous cycle-related fluctuations in delta-9-tetrahydrocannabinol (THC)-induced antinociception have been observed in the rat. The aim of this study was to determine which major ovarian hormone modulates the antinociceptive effects of i.c.v. THC, and whether hormone modulation of THC\u27s behavioral effects could be due to changes in brain cannabinoid receptors (CBr). Vehicle (oil) or hormones (estradiol or progesterone, or both) were administered to female rats on days 3 and 7 post-ovariectomy. On the morning or afternoon of day 8 or day 9, vehicle or THC (100 μg) was administered i.c.v. Paw pressure, tail withdrawal, locomotor activity and catalepsy tests were conducted over a 3-h period. Estradiol (with and without progesterone) enhanced THC-induced paw pressure antinociception only. Ovarian hormones time-dependently modulated CBr in brain structures that mediate antinociception and locomotor activity, but the changes observed in CBr did not parallel changes in behavior. However, the time course of CBr changes must be further elucidated to determine the functional relationship between receptor changes and antinociceptive sensitivity to THC

    Detection and Mapping of Quantitative Trait Loci that Determine Responsiveness

    Get PDF
    Exposure to 70% N2O evokes a robust antinociceptive effect in C57BL/6 (B6) but not in DBA/2 (D2) inbred mice. This study was conducted to identify quantitative trait loci (QTL) in the mouse genome that might determine responsiveness to N2O. Offspring from the F2 generation bred from B6 and D2 progenitors exhibited a broad range of responsiveness to N2O antinociception as determined by the acetic acid-induced abdominal constriction test. QTL analysis was then used to dissect this continuous trait distribution into component loci, and to map them to broad chromosomal regions. To this end, 24 spleens were collected from each of the following four groups: male and female F2 mice responding to 70% N2O in oxygen with 100% response (high-responders); and male and female F2 mice responding with 0% response (low-responders). Genomic DNA was extracted from the spleens and genotyped with simple sequence length polymorphism MapPairs markers. Findings were combined with findings from the earlier QTL analysis from BXD recombinant inbred mice [Brain Res 725 (1996) 23]. Combined results revealed two significant QTL that influence responsiveness to nitrous oxide on proximal chromosome 2 and distal chromosome 5, and one suggestive QTL on midchromosome 18. The chromosome 2 QTL was evident only in males. A significant interaction was found between a locus on chromosome 6 and another on chromosome 13 with a substantial effect on N2O antinociception

    Cannabinoid Receptor Involvement in Stress-Induced Cocaine Reinstatement: Potential Interaction with Noradrenergic Pathways

    Get PDF
    This study examined the role of endocannabinoid signaling in stress-induced reinstatement of cocaine seeking and explored the interaction between noradrenergic and endocannabinergic systems in the process. A well-validated preclinical model for human relapse, the rodent conditioned place preference assay, was used. Cocaine-induced place preference was established in C57BL/6 mice using injections of 15 mg/kg cocaine. Following extinction of preference for the cocaine-paired environment, reinstatement of place preference was determined following 6 min of swim stress or cocaine injection (15 mg/kg, i.p.). The role of endocannabinoid signaling was studied using the cannabinoid antagonist AM-251 (3 mg/kg, i.p.). Another cohort of mice was tested for reinstatement following administration of the cannabinoid agonist CP 55,940 (10, 20, or 40 μg/kg, i.p.). The alpha-2 adrenergic antagonist BRL-44408 (5 mg/kg, i.p.) with or without CP 55,940 (20 μg/kg) was administered to a third group of mice. We found that: (1) AM-251 blocked forced swim-induced, but not cocaine-induced, reinstatement of cocaine-seeking behavior; (2) the cannabinoid agonist CP 55,940 did not reinstate cocaine-seeking behavior when administered alone but did synergize with a non-reinstating dose of the alpha-2 adrenergic antagonist BRL-44408 to cause reinstatement. These results are consistent with the hypothesis that stress exposure triggers the endogenous activation of CB1 receptors and that activation of the endocannabinoid system is required for the stress-induced relapse of the mice to cocaine seeking. Further, the data suggest that the endocannabinoid system interacts with noradrenergic mechanisms to influence stress-induced reinstatement of cocaine-seeking behavior

    High-Frequency Density Oscillations from a Plasma Source Used for Simulating Low-Earth Orbit Plasma Environment

    Get PDF
    We present data from ground-based, vacuum-chamber tests demonstrating the ability to modulate the output of a plasma source capable of producing a low-Earth orbit (LEO) type plasma. We obtained plasma oscillations up to 2.5 kHz impingent on stationary test equipment, which corresponds to meter-level ionospheric structures in LEO. This plasma source is, therefore, suitable for developing scientific instruments that measure the LEO plasma environment, in situ, with meter-level spatial resolution. Measurements were made using a fixed-bias collector and an electrometer sampling at 40 kHz. A mechanical aperture was established at the output of the plasma source via two concentric grids. The outer grid was free to rotate in the azimuthal direction with respect to the fixed inner grid. An identical, alternating hole pattern in the two grids resulted in a variable aperture that cycles through 90 open/close cycles per revolution. The frequency of the plasma oscillations is limited by the mechanism used to spin the grids and the bearing assembly on which the grids rotate. Higher frequencies are obtainable by upgrading the drive mechanism, allowing the possibility of centimeter-level spatial resolution

    The Development of Test Facilities for Induced, High-Frequency Plasma Instabilities

    Get PDF
    We present results from modifications to test facilities equipped with a plasma source capable of producing a LEO-type environment. The modifications impose an oscillation to the output, thus simulating ionospheric disturbance. The frequency of the oscillations is adjustable as well as the base-line output of the source. Test results indicate that the density of the plasma can be varied with minimal impact on other plasma properties such as electron temperature. It is, therefore, possible to simulate realistic plasma environments such as day/night transitions or localized turbulence. The modified source is an effective tool for testing space instruments in a relevant environment increasing the instruments technology readiness level

    The use of fatty acid profile as a potential marker for Brazilian coffee (Coffea arabica L.) for corn adulteration

    Full text link
    Fatty acid methyl ester (FAME) composition of the coffee (Coffea arabica L.) varieties Catuai, Catucaí, Bourbom, Mundo Novo, Rubí and Topázio known to produce beverage of intermediate, excellent, excellent, intermediate, intermediate and poor quality, respectively, was determined for the first time. Average area % of the FAMEs of the six varieties was: palmitic (38.2), stearic (8.3), oleic (8.6), linoleic (38.5), linolenic (1.6) and arachidic (3.6) acids, respectively. The method was very quick with complete characterization (>99%) of the samples studied being possible in less than 6 min. While these values may provide insights for evaluating the coffee quality, no significant effect (p < 0.05) of coffee variety was found on area % of the FAMEs. In addition, FAMEs of six corn samples, six commercial coffee brands and one commercial coffee sample intentionally contaminated with three levels of corn were compared. Although the linoleic/stearic ratio was significantly different in coffee and corn FAMEs, this probe could not be used a marker to detect corn adulteration in commercial coffees

    A randomized phase II trial of mitoxantrone, estramustine and vinorelbine or bcl-2 modulation with 13-cis retinoic acid, interferon and paclitaxel in patients with metastatic castrate-resistant prostate cancer: ECOG 3899

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To test the hypothesis that modulation of Bcl-2 with 13-cis retinoic acid (CRA)/interferon-alpha2b (IFN) with paclitaxel (TAX), or mitoxantrone, estramustine and vinorelbine (MEV) will have clinical activity in men with metastatic castrate-resistant prostate cancer (CRPC).</p> <p>Methods</p> <p>70 patients were treated with either MEV (Arm A) in a 3-week cycle or CRA/IFN/TAX with an 8-week cycle (Arm B). Patients were assessed for response, toxicity, quality of life (QOL), and the effect of treatment on Bcl-2 levels in peripheral blood mononuclear cells (PBMC).</p> <p>Results</p> <p>The PSA response rates were 50% and 23%, measurable disease response rates (CR+PR) 14% and 15%, and median overall survival 19.4 months and 13.9 months on Arm A and Arm B respectively. Transient grade 4 neutropenia occurred in 18 and 2 patients, and grade 3 to 4 thrombosis in 7 patients and 1 patient in Arm A and Arm B respectively. Patients on Arm B reported a clinically significant decline in QOL between baseline and week 9/10 (.71 s.d.), and a significantly lower level of QOL than Arm A (p = 0.01). As hypothesized, Bcl-2 levels decreased with CRA/IFN therapy only in Arm B (p = 0.03).</p> <p>Conclusions</p> <p>Treatment with MEV was well tolerated and demonstrated clinical activity in patients with CRPC. Given the adverse effect of CRA/IFN/TAX on QOL, the study of other novel agents that target Bcl-2 family proteins is warranted. The feasibility of measuring Bcl-2 protein in a cooperative group setting is hypothesis generating and supports further study as a marker for Bcl-2 targeted therapy.</p> <p>Trial Registration</p> <p><b>Clinical Trials Registration number</b>: CDR0000067865</p