1,602 research outputs found

    Exact Z2Z^2 scaling of pair production in the high-energy limit of heavy-ion collisions

    Get PDF
    The two-center Dirac equation for an electron in the external electromagnetic field of two colliding heavy ions in the limit in which the ions are moving at the speed of light is exactly solved and nonperturbative amplitudes for free electron-positron pair production are obtained. We find the condition for the applicability of this solution for large but finite collision energy, and use it to explain recent experimental results. The observed scaling of positron yields as the square of the projectile and target charges is a result of an exact cancellation of a nonperturbative charge dependence and holds as well for large coupling. Other observables would be sensitive to nonperturbative phases.Comment: 4 pages, Revtex, no figures, submitted to PR

    Relativistic time dilatation and the spectrum of electrons emitted by 33 TeV lead ions penetrating thin foils

    Full text link
    We study the energy distribution of ultrarelativistic electrons produced when a beam of 33 TeV Pb81+^{81+}(1s) ions penetrates a thin Al foil. We show that, because of a prominent role of the excitations of the ions inside the foil which becomes possible due to the relativistic time dilatation, the width of this distribution can be much narrower compared to the case when the ions interact with rarefied gaseous targets. We also show that a very similar shape of the energy distribution may arise when 33 TeV Pb82+^{82+} ions penetrate a thin Au foil. These results shed some light on the origin of the very narrow electron energy distributions observed experimentally about a decade ago.Comment: Four pages, two figure

    Clyde tributaries : report of urban stream sediment and surface water geochemistry for Glasgow

    Get PDF
    This report presents the results of an urban drainage geochemical survey carried out jointly by the British Geological Survey (BGS) and Glasgow City Council (GCC) during June 2003. 118 stream sediment and 122 surface water samples were collected at a sample density of 1 per 1 km2 from all tributaries draining into the River Clyde within the GCC administrative area. The study was carried out as part of the BGS systematic Geochemical Surveys of Urban Environments (GSUE) programme. Stream sediment and surface water samples underwent analysis for approximately 46 chemical elements including contaminants such as As, Al, Cd, Cu, Cr, Ni, Pb, Se, V and Zn according to standard GSUE procedures. In addition, parameters such as ammonium, asbestos and Hg as well as organic contaminants such as total petroleum hydrocarbons (TPH), polycyclic aromatic hydrocarbons (PAH), poly-chlorinated biphenyls (PCB) and organo-tin compounds were assessed. The aim of the project was to provide an overview of urban drainage geochemistry in Glasgow to link to an on-going sister project, which is investigating the geochemistry of the Clyde estuary. This report presents the initial findings of the Clyde tributaries survey but it is envisaged that the data will be interpreted in more detail as part of a wider Clyde basin study once the Clyde estuary survey is completed

    Bioaccumulation surveillance in Milford Haven Waterway

    Get PDF
    Biomonitoring of contaminants (metals, organotins, PAHs, PCBs) was carried out along the Milford Haven Waterway (MHW) and at a reference site in the Tywi Estuary during 2007-2008. The species used as bioindicators encompass a variety of uptake routes - Fucus vesiculosus (dissolved contaminants); Littorina littorea (grazer); Mytilus edulis and Cerastoderma edule (suspension feeders); and Nereis diversicolor (omnivore which often reflects contaminants in sediment). Differences in feeding strategy and habitat preference have subtle implications for bioaccumulation trends though, with few exceptions, contaminant body burdens in Milford Haven (MH) were higher than those at the Tywi reference site, reflecting inputs. Elevated concentrations of metals were occasionally observed at individual MH sites, whilst As and Se (molluscs and seaweed) were, for much of MHW, consistently at the higher end of the UK range. However, for the majority of metals, distributions in MH biota were not exceptional by UK standards. Several metal-species combinations indicated increases in bioavailability at upstream sites, which may reflect the influence of geogenic or other land-based sources – perhaps enhanced by lower salinity (greater proportions of more bioavailable forms). TBT levels in MH mussels were below OSPAR toxicity thresholds and in the Tywi were close to zero. Phenyltins were not accumulated appreciably in Mytilus, whereas some Nereis populations may have been subjected to localized (historical) sources. PAHs in Nereis tended to be evenly distributed across most sites, but with somewhat higher values at Dale for acenaphthene, fluoranthene, pyrene, benzo(a)anthracene and chrysene; naphthalenes tended to be enriched further upstream in the mid-upper Haven (a pattern seen in mussels for most PAHs). Whilst concentrations in MH mussels were mostly above reference site and OSPAR backgrounds, it is unlikely that ecotoxicological guidelines would be exceeded. PCBs in mussels were between upper and lower OSPAR guidelines and were unusual in their distribution in that highest levels occurred at the mouth of MH. Condition indices (CI) of bivalves (mussels and cockles) were highest at the Tywi reference site and at the seaward end of MH, decreasing upstream along the Waterway. There were a number of significant (negative) relationships between CI and body burdens and multivariate analysis indicated that a combination of contaminants could influence the pattern in condition (and sub-lethal responses such as MT and TOSC) across sites. Cause and effect needs to be tested more rigorously in future assessments

    Organic geochemistry of Palaeozoic source rocks, central North Sea (CNS)

    Get PDF
    This report details a regional analysis of the source rock quality and potential of Palaeozoic rocks of the UK Central North Sea for the 21CXRM Palaeozoic project. The objective was to undertake a regional screening of all intervals to identify source rocks using new and legacy datasets of all Carboniferous and Devonian samples. In addition, a literature review (Appendix 1) summarises source and kerogen typing information from legacy reports. The background and stratigraphic nomenclature are given in Monaghan et al. (2016), details on individual well interpretations and stratigraphy are given in Kearsey et al. (2015). Geological context on the results of this work are included in basin modelling (Vincent, 2015) and were synthesised into a petroleum systems analysis in Monaghan et al. (2015). New and legacy Carboniferous and Devonian source rock geochemical data were examined per well using industry standard criteria to give an overview of the source rock quality, type (oil or gas prone) and maturity. The aims of this study were to classify the source rock quality of 33 wells, to examine if intervals were ‘gas-prone’ or ‘oil-prone’, and to ascertain the hydrocarbon generation stage of each well based on Rock-Eval pyrolysis, vitrinite reflectance (VR, where available) and total organic carbon (TOC) data. The term ‘gas prone’ was used to describe source rocks that have or could generate gas; ‘oil prone’ for source intervals that have or could generate oil. This study was a rapid screening exercise to identify intervals or areas of interest, and as such the data and inferences must be used concomitantly with other geological data to fully assess the source rock potential within the studied wells. It should be noted that the wells studied penetrate different parts of the geological succession and in many cases only small sections of the Devonian and Carboniferous interval. An initial sift through the wells with available geochemical data indicated that 33 wells had enough data to be usefully evaluated. Subsequently it was found that 8 of the 33 wells had incomplete, unreliable or otherwise poor source rock quality data sets and therefore were not analysed further; the reasons are detailed in this report. The remaining 25 wells selected for analysis were: 43/28-2, 26/07-1, 26/08-1, 36/13-1, 36/23-1, 38/16-1, 38/18-1, 39/07-1, 41/08-1, 42/10a-1, 42/10b-2ST, 42/09-1, 41/10-1, 42/10b-2, 41/15-1, 43/21-2, 41/01-1, 41/20-1, 41/14-1, 43/02-1, 43/17-2, 43/20b-2, 43/28-1, 43/28-2, 44/13-1, 44/16-1. Samples analysed from the majority of these wells were interpreted to be gas prone in the Carboniferous succession (Figure 1). 1. 41/10-1, 41/14-1 and 41/20-1 contained source rocks that were both gas window mature (e.g. VR >1.3) and can be regarded as excellent gas source. Strata in 43/17-2, 44/16-1 and 43/28-1 were also gas mature in all or parts of the section of interest, but with variable source rock quality. The six wells all had low S2 peaks: this may be due to either prior hydrocarbon generation and depletion or the initial presence of low amounts of non-inert kerogen. 2. 41/15-1, 42/10b-2 and 43/21-2 were also identified as possessing good gas-prone source rocks with elevated S2 values and also a high maturity attained by the source rocks. 41/01-1 was identified as a good for gas generation in the deeper section. 3. 26/07-1, 26/08-1, 36/13-1, 38/16-1, 39/07-1, 41/08-1, 42/10a-1, 42/10b-2ST, 42/09-1, 43/02-1, 43/20b-2, 43/28-2 and 44/13-1, contain good to excellent quality source rocks, but have not matured sufficiently to generate significant amount of gas, so these can be regarded as poor gas sources based on their current maturity. If present, in deeper basins some of these intervals will have generated significant quantities of gas

    A light-fronts approach to electron-positron pair production in ultrarelativistic heavy-ion collisions

    Get PDF
    We perform a gauge-transformation on the time-dependent Dirac equation describing the evolution of an electron in a heavy-ion collision to remove the explicit dependence on the long-range part of the interaction. We solve, in an ultra-relativistic limit, the gauged-transformed Dirac equation using light-front variables and a light-fronts representation, obtaining non-perturbative results for the free pair-creation amplitudes in the collider frame. Our result reproduces the result of second-order perturbation theory in the small charge limit while non-perturbative effects arise for realistic charges of the ions.Comment: 39 pages, Revtex, 7 figures, submitted to PR

    Asymptotic channels and gauge transformations of the time-dependent Dirac equation for extremely relativistic heavy-ion collisions

    Get PDF
    We discuss the two-center, time-dependent Dirac equation describing the dynamics of an electron during a peripheral, relativistic heavy-ion collision at extreme energies. We derive a factored form, which is exact in the high-energy limit, for the asymptotic channel solutions of the Dirac equation, and elucidate their close connection with gauge transformations which transform the dynamics into a representation in which the interaction between the electron and a distant ion is of short range. We describe the implications of this relationship for solving the time-dependent Dirac equation for extremely relativistic collisions.Comment: 12 pages, RevTeX, 2 figures, submitted to PR
    • 

    corecore