1,191 research outputs found

    A note on comonotonicity and positivity of the control components of decoupled quadratic FBSDE

    Get PDF
    In this small note we are concerned with the solution of Forward-Backward Stochastic Differential Equations (FBSDE) with drivers that grow quadratically in the control component (quadratic growth FBSDE or qgFBSDE). The main theorem is a comparison result that allows comparing componentwise the signs of the control processes of two different qgFBSDE. As a byproduct one obtains conditions that allow establishing the positivity of the control process.Comment: accepted for publicatio

    The new ALICE data acquisition system (O2/FLP) for LHC Run 3

    Get PDF
    ALICE (A Large Ion Collider Experiment) has undertaken a major upgrade during the LHC Long Shutdown 2. The increase in the detector data rates led to a hundredfold increase in the input raw data, up to 3.5 TB/s. To cope with it, a new common Online and Offline computing system, called O2, has been developed and put in production. The O2/FLP (First Level Processor) system, successor of the ALICE DAQ system, implements the critical functions of detector readout, data quality control and operational services running in the CR1 data centre at the experimental site. Data from the 15 ALICE subdetectors are read out via 8000 optical links by 500 custom PCIe cards hosted in 200 nodes. It addresses novel challenges such as the continuous readout of the TPC detector while keeping compatibility with legacy detector front-end electronics. This paper discusses the final architecture and design of the O2/FLP system and provides an overview of all its components, both hardware and software. It presents the selection process for the FLP nodes, the different commissioning steps and the main accomplishments so far. It will conclude with the challenges that lie ahead and how they will be addressed

    Long-range angular correlations on the near and away side in p–Pb collisions at

    Get PDF

    Event-shape engineering for inclusive spectra and elliptic flow in Pb-Pb collisions at root(NN)-N-S=2.76 TeV

    Get PDF
    Peer reviewe

    Production of He-4 and (4) in Pb-Pb collisions at root(NN)-N-S=2.76 TeV at the LHC

    Get PDF
    Results on the production of He-4 and (4) nuclei in Pb-Pb collisions at root(NN)-N-S = 2.76 TeV in the rapidity range vertical bar y vertical bar <1, using the ALICE detector, are presented in this paper. The rapidity densities corresponding to 0-10% central events are found to be dN/dy4(He) = (0.8 +/- 0.4 (stat) +/- 0.3 (syst)) x 10(-6) and dN/dy4 = (1.1 +/- 0.4 (stat) +/- 0.2 (syst)) x 10(-6), respectively. This is in agreement with the statistical thermal model expectation assuming the same chemical freeze-out temperature (T-chem = 156 MeV) as for light hadrons. The measured ratio of (4)/He-4 is 1.4 +/- 0.8 (stat) +/- 0.5 (syst). (C) 2018 Published by Elsevier B.V.Peer reviewe

    Underlying Event measurements in pp collisions at s=0.9 \sqrt {s} = 0.9 and 7 TeV with the ALICE experiment at the LHC

    Full text link

    CHEP04

    No full text

    Design of hierarchical control framework for ALICE online and offline system

    No full text
    This paper presents the design and implementation of the ALICE O2 Control System prototype. The design of our system is based on the ALICE O2 requirements. The system allows the crew operating the experiment to send simple commands in order to control the ongoing processes running in the computing farm. The sent command is capable of reacting to changing conditions and operational the requirements of experiments' processes. The system supports general commands such as pausing or resuming an ongoing activity, applying a new configuration or terminating the current operation and moving it to a standby status. The topics learnt from this study include communication patterns, multi-level communication, distributed systems as well as state machine controlling. The system is based on the C++ programming language

    Experiences and evolutions of the ALICE DAQ detector algorithms framework

    No full text
    ALICE (A Large Ion Collider Experiment) is the heavy-ion detector studying the physics of strongly interacting matter and the quark-gluon plasma at the CERN LHC (Large Hadron Collider). The 18 ALICE sub-detectors are regularly calibrated in order to achieve most accurate physics measurements. Some of these procedures are done online in the DAQ (Data Acquisition System) so that calibration results can be directly used for detector electronics configuration before physics data taking, at run time for online event monitoring, and offline for data analysis. A framework was designed to collect statistics and compute calibration parameters, and has been used in production since 2008. This paper focuses on the recent features developed to benefit from the multi-cores architecture of CPUs, and to optimize the processing power available for the calibration tasks. It involves some C++ base classes to effectively implement detector specific code, with independent processing of events in parallel threads and aggregation of partial results. The Detector Algorithm (DA) framework provides utility interfaces for handling of input and output (configuration, monitored physics data, results, logging), and self-documentation of the produced executable. New algorithms are created quickly by inheritance of base functionality and implementation of few ad-hoc virtual members, while the framework features are kept expandable thanks to the isolation of the detector calibration code. The DA control system also handles unexpected processes behaviour, logs execution status, and collects performance statistics
    corecore