1,215 research outputs found
Universal magnetic and structural behaviors in the iron arsenides
Commonalities among the order parameters of the ubiquitous antiferromagnetism
present in the parent compounds of the iron arsenide high temperature
superconductors are explored. Additionally, comparison is made between the well
established two-dimensional Heisenberg-Ising magnet, KNiF and iron
arsenide systems residing at a critical point whose structural and magnetic
phase transitions coincide. In particular, analysis is presented regarding two
distinct classes of phase transition behavior reflected in the development of
antiferromagnetic and structural order in the three main classes of iron
arsenide superconductors. Two distinct universality classes are mirrored in
their magnetic phase transitions which empirically are determined by the
proximity of the coupled structural and magnetic phase transitions in these
materials.Comment: 6 pages, 4 figure
Antiferromagnetic Critical Fluctuations in BaFeAs
Magnetic correlations near the magneto-structural phase transition in the
bilayer iron pnictide parent compound, BaFeAs, are measured. In close
proximity to the antiferromagnetic phase transition in BaFeAs, a
crossover to three dimensional critical behavior is anticipated and has been
preliminarily observed. Here we report complementary measurements of
two-dimensional magnetic fluctuations over a broad temperature range about
T. The potential role of two-dimensional critical fluctuations in the
magnetic phase behavior of BaFeAs and their evolution near the
anticipated crossover to three dimensional critical behavior and long-range
order are discussed.Comment: 6 pages, 4 figures; Accepted for publication in Physical Review
Genetic ablation of ryanodine receptor 2 phosphorylation at Ser‐2808 aggravates Ca 2+ ‐dependent cardiomyopathy by exacerbating diastolic Ca 2+ release
Phosphorylation of the cardiac ryanodine receptor (RyR2) by protein kinase A (PKA) at Ser‐2808 is suggested to mediate the physiological ‘fight or flight’ response and contribute to heart failure by rendering the sarcoplasmic reticulum (SR) leaky for Ca 2+ . In the present study, we examined the potential role of RyR2 phosphorylation at Ser‐2808 in the progression of Ca 2+ ‐dependent cardiomyopathy (CCM) by using mice genetically modified to feature elevated SR Ca 2+ leak while expressing RyR2s that cannot be phosphorylated at this site (S2808A). Surprisingly, rather than alleviating the disease phenotype, constitutive dephosphorylation of Ser‐2808 aggravated CCM as manifested by shortened survival, deteriorated in vivo cardiac function, exacerbated SR Ca 2+ leak and mitochondrial injury. Notably, the deteriorations of cardiac function, myocyte Ca 2+ handling, and mitochondria integrity were consistently worse in mice with heterozygous ablation of Ser‐2808 than in mice with complete ablation. Wild‐type (WT) and CCM myocytes expressing unmutated RyR2s exhibited a high level of baseline phosphorylation at Ser‐2808. Exposure of these CCM cells to protein phosphatase 1 caused a transitory increase in Ca 2+ leak attributable to partial dephosphorylation of RyR2 tetramers at Ser‐2808 from more fully phosphorylated state. Thus, exacerbated Ca 2+ leak through partially dephosphorylated RyR2s accounts for the prevalence of the disease phenotype in the heterozygous S2808A CCM mice. These results do not support the importance of RyR2 hyperphosphorylation in Ca 2+ ‐dependent heart disease, and rather suggest roles for the opposite process, the RyR2 dephosphorylation at this residue in physiological and pathophysiological Ca 2+ signalling.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/106986/1/tjp6067.pd
Heat capacity study of BaFeAs: effects of annealing
Heat-capacity, X-ray diffraction, and resistivity measurements on a
high-quality BaFeAs sample show an evolution of the
magneto-structural transition with successive annealing periods. After a 30-day
anneal the resistivity in the (ab) plane decreases by more than an order of
magnitude, to 12 cm, with a residual resistance ratio 36; the
heat-capacity anomaly at the transition sharpens, to an overall width of less
than K, and shifts from 135.4 to 140.2 K. The heat-capacity anomaly in both the
as-grown sample and after the 30-day anneal shows a hysteresis of 0.15 K,
and is unchanged in a magnetic field H = 14 T. The X-ray and
heat-capacity data combined suggest that there is a first order jump in the
structural order parameter. The entropy of the transition is reported
Colapso posterior de mordida: etiología, diagnóstico diferencial y tratamiento
El propósito de esta revisión de reportes de caso y de la literatura es informar al odontólogo general y especialista sobre un correcto significado del diagnóstico del colapso posterior de mordida, y por ende su tratamiento, ya que al tener múltiples conceptos guiará a diferentes enfoques, lo cual resulta confuso. Esta situación clínica implica una pérdida de la dentición en el sector posterior lo que conlleva a una sobrecarga anterior, este signo en algunos casos lleva a perder la correcta oclusión. Existen otras posibles causas para este desorden de la oclusión, como la enfermedad periodontal, alteraciones en forma y función de labios y lengua, así como maloclusiones y hábitos parafuncionales. La variedad del diagnóstico diferencial se ejemplifica con 4 casos clínicos. Finalmente, se da una guía del manejo clínico del odontólogo con respecto a esta alteración
Palladin promotes invasion of pancreatic cancer cells by enhancing invadopodia formation in cancer-associated fibroblasts
The stromal compartment surrounding epithelial-derived pancreatic tumors is thought to have a key role in the aggressive phenotype of this malignancy. Emerging evidence suggests that cancer-associated fibroblasts (CAFs), the most abundant cells in the stroma of pancreatic tumors, contribute to the tumor’s invasion, metastasis and resistance to therapy, but the precise molecular mechanisms that regulate CAFs behavior are poorly understood. In this study, we utilized immortalized human pancreatic CAFs to investigate molecular pathways that control the matrix-remodeling and invasion-promoting activity of CAFs. We showed previously that palladin, an actin-associated protein, is expressed at high levels in CAFs of pancreatic tumors and other solid tumors, and also in an immortalized line of human CAFs. In this study, we found that short-term exposure of CAFs to phorbol esters reduced the number of stress fibers and triggered the appearance of individual invadopodia and invadopodial rosettes in CAFs. Molecular analysis of invadopodia revealed that their composition resembled that of similar structures (that is, invadopodia and podosomes) described in other cell types. Pharmacological inhibition and small interfering RNA knockdown experiments demonstrated that protein kinase C, the small GTPase Cdc42 and palladin were necessary for the efficient assembly of invadopodia by CAFs. In addition, GTPase activity assays showed that palladin contributes to the activation of Cdc42. In mouse xenograft experiments using a mixture of CAFs and tumor cells, palladin expression in CAFs promoted the rapid growth and metastasis of human pancreatic tumor cells. Overall, these results indicate that high levels of palladin expression in CAFs enhance their ability to remodel the extracellular matrix by regulating the activity of Cdc42, which in turn promotes the assembly of matrix-degrading invadopodia in CAFs and tumor cell invasion. Together, these results identify a novel molecular signaling pathway that may provide new molecular targets for the inhibition of pancreatic cancer metastasis
The impact of Charlson comorbidity index on the functional capacity of COVID-19 survivors: a prospective cohort study with one-year follow-up
Objective: To determine the association between the Charlson comorbidity index (CCI) score after discharge with 6-min walk test (6MWT) 1 year after discharge in a cohort of COVID-19 survivors. Methods: In this prospective study, data were collected from a consecutive sample of patients hospitalized for COVID-19. The CCI score was calculated from the comorbidity data. The main outcome was the distance walked in the 6MWT at 1 year after discharge. Associations between CCI and meters covered in the 6MWT were assessed through crude and adjusted linear regressions. The model was adjusted for possible confounding factors (sex, days of hospitalization, and basal physical capacity through sit-to-stand test one month after discharge). Results: A total of 41 patients were included (mean age 58.8 +/- 12.7 years, 20/21 men/women). A significant association was observed between CCI and 6MWT (meters): (i) crude model: beta = -18.7, 95% CI = -34.7 to -2.6, p < 0.05; (ii) model adjusted for propensity score including sex, days of hospitalization, and sit-to-stand: beta = -23.0, 95% CI = -39.1 to -6.8, p < 0.05. Conclusions: A higher CCI score after discharge indicates worse performance on the 6MWT at 1-year follow-up in COVID-19 survivors. The CCI score could also be used as a screening tool to make important clinical decisions
Newcomer and receiving communities' perspectives on Latino immigrant acculturation in community B
Purpose of the project: to understand the perceptions of both Latino newcomers and receiving community members regarding the integration of Latino immigrants in rural communities in the Midwest. This study is part of a larger participatory action research project that seeks to examine effective strategies for integrating Latino newcomers into rural communities.Includes bibliographical references
Functional and Morphological Studies of Mitochondria Exposed to Undecagold Clusters: Biologic Surfaces Labeling with Gold Clusters
This study reports morphological and functional alterations observed in respiring isolated mitochondria when they are exposed to nonpenetrating, positive electrostatically charged synthetic undecagold clusters. Modification of the undecagold clusters positive charges change or prevent the functional effects and the binding to the outside surface of the mitochondria. The mitochondrial functional alterations are dependent on the oxidative phosphorylation capacity of the isolated organelles. The results of these experiments indicate that artificial undecagold may be useful to explore the molecular mechanisms of biological energy transducers which require electric charges separation, ionic fluxes, and electric surface properties
- …