6 research outputs found
Phase switching in a voltage-biased Aharonov-Bohm interferometer
Recent experiment [Sigrist et al., Phys. Rev. Lett. {\bf 98}, 036805 (2007)]
reported switches between 0 and in the phase of Aharonov-Bohm
oscillations of the two-terminal differential conductance through a two-dot
ring with increasing voltage bias. Using a simple model, where one of the dots
contains multiple interacting levels, these findings are explained as a result
of transport through the interferometer being dominated at different biases by
quantum dot levels of different "parity" (i.e. the sign of the overlap integral
between the dot state and the states in the leads). The redistribution of
electron population between different levels with bias leads to the fact that
the number of switching events is not necessarily equal to the number of dot
levels, in agreement with experiment. For the same reason switching does not
always imply that the parity of levels is strictly alternating. Lastly, it is
demonstrated that the correlation between the first switching of the phase and
the onset of the inelastic cotunneling, as well as the sharp (rather than
gradual) change of phase when switching occurs, give reason to think that the
present interpretation of the experiment is preferable to the one based on
electrostatic AB effect.Comment: 12 pages, 9 figure
Electron Spin Dynamics in Semiconductors without Inversion Symmetry
We present a microscopic analysis of electron spin dynamics in the presence
of an external magnetic field for non-centrosymmetric semiconductors in which
the D'yakonov-Perel' spin-orbit interaction is the dominant spin relaxation
mechanism. We implement a fully microscopic two-step calculation, in which the
relaxation of orbital motion due to electron-bath coupling is the first step
and spin relaxation due to spin-orbit coupling is the second step. On this
basis, we derive a set of Bloch equations for spin with the relaxation times
T_1 and T_2 obtained microscopically. We show that in bulk semiconductors
without magnetic field, T_1 = T_2, whereas for a quantum well with a magnetic
field applied along the growth direction T_1 = T_2/2 for any magnetic field
strength.Comment: to appear in Proceedings of Mesoscopic Superconductivity and
Spintronics (MS+S2002
Electron Spin Relaxation in a Semiconductor Quantum Well
A fully microscopic theory of electron spin relaxation by the
D'yakonov-Perel' type spin-orbit coupling is developed for a semiconductor
quantum well with a magnetic field applied in the growth direction of the well.
We derive the Bloch equations for an electron spin in the well and define
microscopic expressions for the spin relaxation times. The dependencies of the
electron spin relaxation rate on the lowest quantum well subband energy,
magnetic field and temperature are analyzed.Comment: Revised version as will appear in Physical Review
Single Molecule Detection of Nanomechanical motion
We investigate theoretically how single molecule spectroscopy techniques can be used to perform fast and high resolution displacement detection and manipulation of nanomechanical oscillators, such as singly clamped carbon nanotubes. We analyze the possibility of real time displacement detection by the luminescence signal and of displacement fluctuations by the degree of second order coherence. Estimates of the electromechanical coupling constant indicate that intriguing regimes of strong backaction between the two-level system of a molecule and the oscillator can be realized