20,027 research outputs found
Limits on Lorentz violation from charged-pion decay
Charged-pion decay offers many opportunities to study Lorentz violation.
Using an effective field theory approach, we study Lorentz violation in the
lepton, W-boson, and quark sectors and derive the differential pion-decay rate,
including muon polarization. Using coordinate redefinitions we are able to
relate the first-generation quark sector, in which no bounds were previously
reported, to the lepton and W-boson sector. This facilitates a tractable
calculation, enabling us to place bounds on the level of on
first-generation quark parameters. Our expression for the pion-decay rate can
be used to constrain Lorentz violation in future experiments.Comment: 12 pages, 1 figure, Accepted for publication in Phys. Rev.
Light propagation and emission in complex photonic media
We provide an introduction to complex photonic media, that is, composite
materials with spatial inhomogeneities that are distributed over length scales
comparable to or smaller than the wavelength of light. This blossoming field is
firmly rooted in condensed matter physics, in optics, and in materials science.
Many stimulating analogies exist with other wave phenomena such as sound and
seismology, X-rays, neutrons. The field has a rich history, which has led to
many applications in lighting, novel lasers, light harvesting, microscopy, and
bio optics. We provide a brief overview of complex photonic media with
different classes of spatial order, varying from completely random to
long-periodically ordered structures, quasi crystalline and aperiodic
structures, and arrays of cavities. In addition to shaping optical waves by
suitable photonic nanostructures, the realization is quickly arising that the
spatial shaping of optical wavefronts with spatial light modulators
dramatically increases the number of control parameters. As a result, it is
becoming possible for instance to literally see through completely opaque
complex media. We discuss a unified view of complex photonic media by means of
a photonic interaction strength parameter. This parameter gauges the
interaction of light with any complex photonic medium, and allows to compare
complex media from different classes for similar applications.Comment: 8 pages, 2 figures, Light Localisation and Lasing: Random and
Quasi-Random Photonic Structures, Eds. M. Ghulinyan and L. Pavesi, (Cambridge
Univ. Press, Cambridge, 2015) Ch. 1, p.
Optimal control of light propagation through multiple-scattering media in the presence of noise
We study the control of coherent light propagation through
multiple-scattering media in the presence of measurement noise. In our
experiments, we use a two-step optimization procedure to find the optimal
incident wavefront. We conclude that the degree of optimal control of coherent
light propagation through a multiple-scattering medium is only determined by
the number of photoelectrons detected per single speckle spot. The prediction
of our model agrees well with the experimental results. Our results offer
opportunities for imaging applications through scattering media such as
biological tissue in the shot noise limit
Expression systems for industrial Gram-positive bacteria with low guanine and cytosine content
Recent years have seen an increase in the development of gene expression systems for industrial Gram-positive bacteria with low guanine and cytosine content that belong to the genera Bacillus, Clostridium, Lactococcus, Lactobacillus, Staphylococcus and Streptococcus. In particular, considerable advances have been made in the construction of inducible gene expression systems based on the capacity of these bacteria to utilize specific sugars or to secrete autoinducing peptides that are involved in quorum sensing. These controlled expression systems allow for present and future exploitation of these bacteria as cell factories in medical, agricultural, and food biotechnology.
Design of a 3D photonic band gap cavity in a diamond-like inverse woodpile photonic crystal
We theoretically investigate the design of cavities in a three-dimensional
(3D) inverse woodpile photonic crystal. This class of cubic diamond-like
crystals has a very broad photonic band gap and consists of two perpendicular
arrays of pores with a rectangular structure. The point defect that acts as a
cavity is centred on the intersection of two intersecting perpendicular pores
with a radius that differs from the ones in the bulk of the crystal. We have
performed supercell bandstructure calculations with up to
unit cells. We find that up to five isolated and dispersionless bands appear
within the 3D photonic band gap. For each isolated band, the electric-field
energy is localized in a volume centred on the point defect, hence the point
defect acts as a 3D photonic band gap cavity. The mode volume of the cavities
resonances is as small as 0.8 (resonance wavelength cubed),
indicating a strong confinement of the light. By varying the radius of the
defect pores we found that only donor-like resonances appear for smaller defect
radius, whereas no acceptor-like resonances appear for greater defect radius.
From a 3D plot of the distribution of the electric-field energy density we
conclude that peaks of energy found in sharp edges situated at the point
defect, similar to how electrons collect at such features. This is different
from what is observed for cavities in non-inverted woodpile structures. Since
inverse woodpile crystals can be fabricated from silicon by CMOS-compatible
means, we project that single cavities and even cavity arrays can be realized,
for wavelength ranges compatible with telecommunication windows in the near
infrared.Comment: 11 figure
Local density of optical states in the band gap of a finite photonic crystal
We study the local density of states (LDOS) in a finite photonic crystal, in
particular in the frequency range of the band gap. We propose a new point of
view on the band gap, which we consider to be the result of vacuum fluctuations
in free space that tunnel in the forbidden range in the crystal. As a result,
we arrive at a model for the LDOS that is in two major items modified compared
to the well-known expression for infinite crystals. Firstly, we modify the
Dirac delta functions to become Lorentzians with a width set by the crystal
size. Secondly, building on characterization of the fields versus frequency and
position we calculated the fields in the band gap. We start from the fields at
the band edges, interpolated in space and position, and incorporating the
exponential damping in the band gap. We compare our proposed model to exact
calculations in one dimension using the transfer matrix method and find very
good agreement. Notably, we find that in finite crystals, the LDOS depends on
frequency, on position, and on crystal size, in stark contrast to the
well-known results for infinite crystals.Comment: 22 pages, 8 figure
Statistical analysis of time-resolved emission from ensembles of semiconductor quantum dots: Interpretation of exponential decay models
We present a statistical analysis of time-resolved spontaneous emission decay curves from ensembles of emitters, such as semiconductor quantum dots, with the aim of interpreting ubiquitous non-single-exponential decay. Contrary to what is widely assumed, the density of excited emitters and the intensity in an emission decay curve are not proportional, but the density is a time integral of the intensity. The integral relation is crucial to correctly interpret non-single-exponential decay. We derive the proper normalization for both a discrete and a continuous distribution of rates, where every decay component is multiplied by its radiative decay rate. A central result of our paper is the derivation of the emission decay curve when both radiative and nonradiative decays are independently distributed. In this case, the well-known emission quantum efficiency can no longer be expressed by a single number, but is also distributed. We derive a practical description of non-single-exponential emission decay curves in terms of a single distribution of decay rates; the resulting distribution is identified as the distribution of total decay rates weighted with the radiative rates. We apply our analysis to recent examples of colloidal quantum dot emission in suspensions and in photonic crystals, and we find that this important class of emitters is well described by a log-normal distribution of decay rates with a narrow and a broad distribution, respectively. Finally, we briefly discuss the Kohlrausch stretched-exponential model, and find that its normalization is ill defined for emitters with a realistic quantum efficiency of less than 100%.\ud
\u
Extracting the top-quark running mass using +1-jet events produced at the Large Hadron Collider
We present the calculation of the next-to-leading order QCD corrections for
top-quark pair production in association with an additional jet at hadron
colliders, using the modified minimal subtraction scheme to renormalize the
top-quark mass. The results are compared to measurements at the Large Hadron
Collider run I. In particular, we determine the top-quark running mass from a
fit of the theoretical results presented here to the LHC data
Nickel oxide photocathodes prepared using rapid discharge sintering for p-type dye-sensitized solar cells
This paper compares the photoelectrochemical performances of nickel oxide (NiO) thin films processed using two different sintering procedures: rapid discharge sintering (RDS) and conventional furnace sintering (CS). Prior to sintering, NiO nanoparticles were sprayed onto substrates to form loosely adherent nanoparticulate coatings. After RDS and furnace sintering the resultant NiO coatings were sensitized with erythrosine B dye and corresponding p-type dyesensitized solar cells were fabricated and characterized. NiO electrodes fabricated using the RDS technique exhibited a fourfold enhancement in electroactivity compared to CS electrodes. A possible explanation is the smaller sintered grain size and more open mesoporous structure achieved using the microwave plasma treatments
- âŠ