5,789 research outputs found
Fleet Prognosis with Physics-informed Recurrent Neural Networks
Services and warranties of large fleets of engineering assets is a very
profitable business. The success of companies in that area is often related to
predictive maintenance driven by advanced analytics. Therefore, accurate
modeling, as a way to understand how the complex interactions between operating
conditions and component capability define useful life, is key for services
profitability. Unfortunately, building prognosis models for large fleets is a
daunting task as factors such as duty cycle variation, harsh environments,
inadequate maintenance, and problems with mass production can lead to large
discrepancies between designed and observed useful lives. This paper introduces
a novel physics-informed neural network approach to prognosis by extending
recurrent neural networks to cumulative damage models. We propose a new
recurrent neural network cell designed to merge physics-informed and
data-driven layers. With that, engineers and scientists have the chance to use
physics-informed layers to model parts that are well understood (e.g., fatigue
crack growth) and use data-driven layers to model parts that are poorly
characterized (e.g., internal loads). A simple numerical experiment is used to
present the main features of the proposed physics-informed recurrent neural
network for damage accumulation. The test problem consist of predicting fatigue
crack length for a synthetic fleet of airplanes subject to different mission
mixes. The model is trained using full observation inputs (far-field loads) and
very limited observation of outputs (crack length at inspection for only a
portion of the fleet). The results demonstrate that our proposed hybrid
physics-informed recurrent neural network is able to accurately model fatigue
crack growth even when the observed distribution of crack length does not match
with the (unobservable) fleet distribution.Comment: Data and codes (including our implementation for both the multi-layer
perceptron, the stress intensity and Paris law layers, the cumulative damage
cell, as well as python driver scripts) used in this manuscript are publicly
available on GitHub at https://github.com/PML-UCF/pinn. The data and code are
released under the MIT Licens
Finite Size Effects in Separable Recurrent Neural Networks
We perform a systematic analytical study of finite size effects in separable
recurrent neural network models with sequential dynamics, away from saturation.
We find two types of finite size effects: thermal fluctuations, and
disorder-induced `frozen' corrections to the mean-field laws. The finite size
effects are described by equations that correspond to a time-dependent
Ornstein-Uhlenbeck process. We show how the theory can be used to understand
and quantify various finite size phenomena in recurrent neural networks, with
and without detailed balance.Comment: 24 pages LaTex, with 4 postscript figures include
Avaliação de cultivares de milho e sorgo para produção de forragem.
bitstream/item/25659/1/Com-94.pd
- …