104 research outputs found

    Identification of Boundary Conditions Using Natural Frequencies

    Full text link
    The present investigation concerns a disc of varying thickness of whose flexural stiffness DD varies with the radius rr according to the law D=D0rmD=D_0 r^m, where D0D_0 and mm are constants. The problem of finding boundary conditions for fastening this disc, which are inaccessible to direct observation, from the natural frequencies of its axisymmetric flexural oscillations is considered. The problem in question belongs to the class of inverse problems and is a completely natural problem of identification of boundary conditions. The search for the unknown conditions for fastening the disc is equivalent to finding the span of the vectors of unknown conditions coefficients. It is shown that this inverse problem is well posed. Two theorems on the uniqueness and a theorem on stability of the solution of this problem are proved, and a method for establishing the unknown conditions for fastening the disc to the walls is indicated. An approximate formula for determining the unknown conditions is obtained using first three natural frequencies. The method of approximate calculation of unknown boundary conditions is explained with the help of three examples of different cases for the fastening the disc (rigid clamping, free support, elastic fixing). Keywords: Boundary conditions, a disc of varying thickness,inverse problem, Plucker condition.Comment: 19 page

    Scattering theory with finite-gap backgrounds: Transformation operators and characteristic properties of scattering data

    Full text link
    We develop direct and inverse scattering theory for Jacobi operators (doubly infinite second order difference operators) with steplike coefficients which are asymptotically close to different finite-gap quasi-periodic coefficients on different sides. We give necessary and sufficient conditions for the scattering data in the case of perturbations with finite second (or higher) moment.Comment: 23 page

    Uniqueness of the potential function for the vectorial Sturm-Liouville equation on a finite interval

    Get PDF
    [[abstract]]In this paper, the vectorial Sturm-Liouville operator L Q =−d 2 dx 2 +Q(x) is considered, where Q(x) is an integrable m×m matrix-valued function defined on the interval [0,π] . The authors prove that m 2 +1 characteristic functions can determine the potential function of a vectorial Sturm-Liouville operator uniquely. In particular, if Q(x) is real symmetric, then m(m+1) 2 +1 characteristic functions can determine the potential function uniquely. Moreover, if only the spectral data of self-adjoint problems are considered, then m 2 +1 spectral data can determine Q(x) uniquely.[[notice]]補正完畢[[incitationindex]]SCI[[cooperationtype]]國外[[booktype]]電子

    Differential Calculi on Associative Algebras and Integrable Systems

    Full text link
    After an introduction to some aspects of bidifferential calculus on associative algebras, we focus on the notion of a "symmetry" of a generalized zero curvature equation and derive Backlund and (forward, backward and binary) Darboux transformations from it. We also recall a matrix version of the binary Darboux transformation and, inspired by the so-called Cauchy matrix approach, present an infinite system of equations solved by it. Finally, we sketch recent work on a deformation of the matrix binary Darboux transformation in bidifferential calculus, leading to a treatment of integrable equations with sources.Comment: 19 pages, to appear in "Algebraic Structures and Applications", S. Silvestrov et al (eds.), Springer Proceedings in Mathematics & Statistics, 202

    Long-Time Asymptotics for the Korteweg-de Vries Equation via Nonlinear Steepest Descent

    Full text link
    We apply the method of nonlinear steepest descent to compute the long-time asymptotics of the Korteweg-de Vries equation for decaying initial data in the soliton and similarity region. This paper can be viewed as an expository introduction to this method.Comment: 31 page

    Transmutations and spectral parameter power series in eigenvalue problems

    Full text link
    We give an overview of recent developments in Sturm-Liouville theory concerning operators of transmutation (transformation) and spectral parameter power series (SPPS). The possibility to write down the dispersion (characteristic) equations corresponding to a variety of spectral problems related to Sturm-Liouville equations in an analytic form is an attractive feature of the SPPS method. It is based on a computation of certain systems of recursive integrals. Considered as families of functions these systems are complete in the L2L_{2}-space and result to be the images of the nonnegative integer powers of the independent variable under the action of a corresponding transmutation operator. This recently revealed property of the Delsarte transmutations opens the way to apply the transmutation operator even when its integral kernel is unknown and gives the possibility to obtain further interesting properties concerning the Darboux transformed Schr\"{o}dinger operators. We introduce the systems of recursive integrals and the SPPS approach, explain some of its applications to spectral problems with numerical illustrations, give the definition and basic properties of transmutation operators, introduce a parametrized family of transmutation operators, study their mapping properties and construct the transmutation operators for Darboux transformed Schr\"{o}dinger operators.Comment: 30 pages, 4 figures. arXiv admin note: text overlap with arXiv:1111.444

    The Wasteland of Random Supergravities

    Full text link
    We show that in a general \cal{N} = 1 supergravity with N \gg 1 scalar fields, an exponentially small fraction of the de Sitter critical points are metastable vacua. Taking the superpotential and Kahler potential to be random functions, we construct a random matrix model for the Hessian matrix, which is well-approximated by the sum of a Wigner matrix and two Wishart matrices. We compute the eigenvalue spectrum analytically from the free convolution of the constituent spectra and find that in typical configurations, a significant fraction of the eigenvalues are negative. Building on the Tracy-Widom law governing fluctuations of extreme eigenvalues, we determine the probability P of a large fluctuation in which all the eigenvalues become positive. Strong eigenvalue repulsion makes this extremely unlikely: we find P \propto exp(-c N^p), with c, p being constants. For generic critical points we find p \approx 1.5, while for approximately-supersymmetric critical points, p \approx 1.3. Our results have significant implications for the counting of de Sitter vacua in string theory, but the number of vacua remains vast.Comment: 39 pages, 9 figures; v2: fixed typos, added refs and clarification

    Necessary condition for the existence of an intertwining operator and classification of transmutations on its basis

    Get PDF
    The authors study second-order ordinary differential operators with functional coefficients for all derivatives and the Volterra integral operator with a definite kernel. Results of the paper establish a hyperbolic equation and additional conditions that allow one to construct a kernel according to the OD

    Transmutation operators boundary value problems

    Get PDF
    Transmutation operators method is used to solve and study boundary value problems. In this paper several ways to obtain transformation operators are considered: the finite integral transforms, Neumann series, the Fourier transforms, and reflection techniques. The finite integral transform technique leads to solution in the form of a composition of the Fourier sine transform and inverse finite integral transfor
    corecore