15 research outputs found

    Geometric Bogomolov conjecture for abelian varieties and some results for those with some degeneration (with an appendix by Walter Gubler: The minimal dimension of a canonical measure)

    Full text link
    In this paper, we formulate the geometric Bogomolov conjecture for abelian varieties, and give some partial answers to it. In fact, we insist in a main theorem that under some degeneracy condition, a closed subvariety of an abelian variety does not have a dense subset of small points if it is a non-special subvariety. The key of the proof is the study of the minimal dimension of the components of a canonical measure on the tropicalization of the closed subvariety. Then we can apply the tropical version of equidistribution theory due to Gubler. This article includes an appendix by Walter Gubler. He shows that the minimal dimension of the components of a canonical measure is equal to the dimension of the abelian part of the subvariety. We can apply this result to make a further contribution to the geometric Bogomolov conjecture.Comment: 30 page

    Theorie de Lubin-Tate non-abelienne et representations elliptiques

    Full text link
    Harris and Taylor proved that the supercuspidal part of the cohomology of the Lubin-Tate tower realizes both the local Langlands and Jacquet-Langlands correspondences, as conjectured by Carayol. Recently, Boyer computed the remaining part of the cohomology and exhibited two defects : first, the representations of GL\_d which appear are of a very particular and restrictive form ; second, the Langlands correspondence is not realized anymore. In this paper, we study the cohomology complex in a suitable equivariant derived category, and show how it encodes Langlands correspondance for all elliptic representations. Then we transfer this result to the Drinfeld tower via an enhancement of a theorem of Faltings due to Fargues. We deduce that Deligne's weight-monodromy conjecture is true for varieties uniformized by Drinfeld's coverings of his symmetric spaces.Comment: 54 page

    Espaces de Berkovich sur Z : \'etude locale

    Full text link
    We investigate the local properties of Berkovich spaces over Z. Using Weierstrass theorems, we prove that the local rings of those spaces are noetherian, regular in the case of affine spaces and excellent. We also show that the structure sheaf is coherent. Our methods work over other base rings (valued fields, discrete valuation rings, rings of integers of number fields, etc.) and provide a unified treatment of complex and p-adic spaces.Comment: v3: Corrected a few mistakes. Corrected the proof of the Weierstrass division theorem 7.3 in the case where the base field is imperfect and trivially value

    Degenerating families of dendrograms

    Full text link
    Dendrograms used in data analysis are ultrametric spaces, hence objects of nonarchimedean geometry. It is known that there exist pp-adic representation of dendrograms. Completed by a point at infinity, they can be viewed as subtrees of the Bruhat-Tits tree associated to the pp-adic projective line. The implications are that certain moduli spaces known in algebraic geometry are pp-adic parameter spaces of (families of) dendrograms, and stochastic classification can also be handled within this framework. At the end, we calculate the topology of the hidden part of a dendrogram.Comment: 13 pages, 8 figure

    Motivic Serre invariants, ramification, and the analytic Milnor fiber

    Full text link
    We show how formal and rigid geometry can be used in the theory of complex singularities, and in particular in the study of the Milnor fibration and the motivic zeta function. We introduce the so-called analytic Milnor fiber associated to the germ of a morphism f from a smooth complex algebraic variety X to the affine line. This analytic Milnor fiber is a smooth rigid variety over the field of Laurent series C((t)). Its etale cohomology coincides with the singular cohomology of the classical topological Milnor fiber of f; the monodromy transformation is given by the Galois action. Moreover, the points on the analytic Milnor fiber are closely related to the motivic zeta function of f, and the arc space of X. We show how the motivic zeta function can be recovered as some kind of Weil zeta function of the formal completion of X along the special fiber of f, and we establish a corresponding Grothendieck trace formula, which relates, in particular, the rational points on the analytic Milnor fiber over finite extensions of C((t)), to the Galois action on its etale cohomology. The general observation is that the arithmetic properties of the analytic Milnor fiber reflect the structure of the singularity of the germ f.Comment: Some minor errors corrected. The original publication is available at http://www.springerlink.co

    On a Conjecture of Rapoport and Zink

    Full text link
    In their book Rapoport and Zink constructed rigid analytic period spaces FwaF^{wa} for Fontaine's filtered isocrystals, and period morphisms from PEL moduli spaces of pp-divisible groups to some of these period spaces. They conjectured the existence of an \'etale bijective morphism FaFwaF^a \to F^{wa} of rigid analytic spaces and of a universal local system of QpQ_p-vector spaces on FaF^a. For Hodge-Tate weights n1n-1 and nn we construct in this article an intrinsic Berkovich open subspace F0F^0 of FwaF^{wa} and the universal local system on F0F^0. We conjecture that the rigid-analytic space associated with F0F^0 is the maximal possible FaF^a, and that F0F^0 is connected. We give evidence for these conjectures and we show that for those period spaces possessing PEL period morphisms, F0F^0 equals the image of the period morphism. Then our local system is the rational Tate module of the universal pp-divisible group and enjoys additional functoriality properties. We show that only in exceptional cases F0F^0 equals all of FwaF^{wa} and when the Shimura group is GLnGL_n we determine all these cases.Comment: v2: 48 pages; many new results added, v3: final version that will appear in Inventiones Mathematica

    Big Line Bundles over Arithmetic Varieties

    Full text link
    We prove a Hilbert-Samuel type result of arithmetic big line bundles in Arakelov geometry, which is an analogue of a classical theorem of Siu. An application of this result gives equidistribution of small points over algebraic dynamical systems, following the work of Szpiro-Ullmo-Zhang. We also generalize Chambert-Loir's non-archimedean equidistribution

    Berkovich Skeleta and Birational Geometry

    No full text
    status: publishe
    corecore