277 research outputs found

    Approach to Equilibrium of a Nondegenerate Quantum System: Decay of Oscillations and Detailed Balance as Separate Effects of a Reservoir

    Full text link
    The approach to equilibrium of a nondegenerate quantum system involves the damping of microscopic population oscillations, and, additionally, the bringing about of detailed balance, i.e. the achievement of the correct Boltzmann factors relating the populations. These two are separate effects of interaction with a reservoir. One stems from the randomization of phases and the other from phase space considerations. Even the meaning of the word `phase' differs drastically in the two instances in which it appears in the previous statement. In the first case it normally refers to quantum phases whereas in the second it describes the multiplicity of reservoir states that corresponds to each system state. The generalized master equation theory for the time evolution of such systems is here developed in a transparent manner and both effects of reservoir interactions are addressed in a unified fashion. The formalism is illustrated in simple cases including in the standard spin-boson situation wherein a quantum dimer is in interaction with a bath consisting of harmonic oscillators. The theory has been constructed for application in energy transfer in molecular aggregates and in photosynthetic reaction centers

    Adiabatic-Nonadiabatic Transition in the Diffusive Hamiltonian Dynamics of a Classical Holstein Polaron

    Get PDF
    We study the Hamiltonian dynamics of a free particle injected onto a chain containing a periodic array of harmonic oscillators in thermal equilibrium. The particle interacts locally with each oscillator, with an interaction that is linear in the oscillator coordinate and independent of the particle's position when it is within a finite interaction range. At long times the particle exhibits diffusive motion, with an ensemble averaged mean-squared displacement that is linear in time. The diffusion constant at high temperatures follows a power law D ~ T^{5/2} for all parameter values studied. At low temperatures particle motion changes to a hopping process in which the particle is bound for considerable periods of time to a single oscillator before it is able to escape and explore the rest of the chain. A different power law, D ~ T^{3/4}, emerges in this limit. A thermal distribution of particles exhibits thermally activated diffusion at low temperatures as a result of classically self-trapped polaronic states.Comment: 15 pages, 4 figures Submitted to Physical Review

    Static Pairwise Annihilation in Complex Networks

    Get PDF
    We study static annihilation on complex networks, in which pairs of connected particles annihilate at a constant rate during time. Through a mean-field formalism, we compute the temporal evolution of the distribution of surviving sites with an arbitrary number of connections. This general formalism, which is exact for disordered networks, is applied to Kronecker, Erd\"os-R\'enyi (i.e. Poisson) and scale-free networks. We compare our theoretical results with extensive numerical simulations obtaining excellent agreement. Although the mean-field approach applies in an exact way neither to ordered lattices nor to small-world networks, it qualitatively describes the annihilation dynamics in such structures. Our results indicate that the higher the connectivity of a given network element, the faster it annihilates. This fact has dramatic consequences in scale-free networks, for which, once the ``hubs'' have been annihilated, the network disintegrates and only isolated sites are left.Comment: 7 Figures, 10 page

    A Study of The Formation of Stationary Localized States Due to Nonlinear Impurities Using The Discrete Nonlinear Schr\"odinger Equation

    Full text link
    The Discrete Nonlinear Schro¨\ddot{o}dinger Equation is used to study the formation of stationary localized states due to a single nonlinear impurity in a Caley tree and a dimeric nonlinear impurity in the one dimensional system. The rotational nonlinear impurity and the impurity of the form −χ∣C∣σ-\chi \mid C \mid^{\sigma} where σ\sigma is arbitrary and χ\chi is the nonlinearity parameter are considered. Furthermore, ∣C∣\mid C \mid represents the absolute value of the amplitude. Altogether four cases are studies. The usual Greens function approach and the ansatz approach are coherently blended to obtain phase diagrams showing regions of different number of states in the parameter space. Equations of critical lines separating various regions in phase diagrams are derived analytically. For the dimeric problem with the impurity −χ∣C∣σ-\chi \mid C \mid^{\sigma}, three values of ∣χcr∣\mid \chi_{cr} \mid, namely, ∣χcr∣=2\mid \chi_{cr} \mid = 2, at σ=0\sigma = 0 and ∣χcr∣=1\mid \chi_{cr} \mid = 1 and 83\frac{8}{3} for σ=2\sigma = 2 are obtained. Last two values are lower than the existing values. Energy of the states as a function of parameters is also obtained. A model derivation for the impurities is presented. The implication of our results in relation to disordered systems comprising of nonlinear impurities and perfect sites is discussed.Comment: 10 figures available on reques
    • …
    corecore