6 research outputs found

    Layer 6 cortical neurons require Reelin-Dab1 signaling for cellular orientation, Golgi deployment, and directed neurite growth into the marginal zone

    No full text
    Abstract Background The secreted ligand Reelin is believed to regulate the translocation of prospective layer 6 (L6) neocortical neurons into the preplate, a loose layer of pioneer neurons that overlies the ventricular zone. Recent studies have also suggested that Reelin controls neuronal orientation and polarized dendritic growth during this period of early cortical development. To explicitly characterize and quantify how Reelin controls this critical aspect of neurite initiation and growth we used a new ex utero explant model of early cortical development to selectively label a subset of L6 cortical neurons for complete 3-D reconstruction. Results The total neurite arbor sizes of neurons in Reelin-deficient (reeler mutant) and Dab1-deficient (Reelin-non-responsive scrambler mutant) cortices were quantified and unexpectedly were not different than control arbor lengths (p = 0.51). For each mutant, however, arbor organization was markedly different: mutant neurons manifested more primary processes (neurites emitted directly from the soma) than wild type, and these neurites were longer and displayed less branching. Reeler and scrambler mutant neurites extended tangentially rather than radially, and the Golgi apparatus that normally invests the apical neurite was compact in both reeler and scrambler mutants. Mutant cortices also exhibited a neurite “exclusion zone” which was relatively devoid of L6 neuron neurites and extended at least 15 μm beneath the pial surface, an area corresponding to the marginal zone (MZ) in the wild type explants. The presence of an exclusion zone was also indicated in the orientation of mutant primary neurite and neuronal somata, which failed to adopt angles within ~20˚ of the radial line to the pial surface. Injection of recombinant Reelin to reeler, but not scrambler, mutant cortices fully rescued soma orientation, Golgi organization, and dendritic projection defects within four hrs. Conclusions These findings indicate Reelin promotes directional dendritic growth into the MZ, an otherwise exclusionary zone for L6 neurites.</p

    Gamma Amplitude-Envelope Correlations Are Strongly Elevated within Hyperexcitable Networks in Focal Epilepsy

    No full text
    Methods to quantify cortical hyperexcitability are of enormous interest for mapping epileptic networks in patients with focal epilepsy. We hypothesize that, in the resting state, cortical hyperexcitability increases firing-rate correlations between neuronal populations within seizure onset zones (SOZs). This hypothesis predicts that in the gamma frequency band (40–200 Hz), amplitude envelope correlations (AECs), a relatively straightforward measure of functional connectivity, should be elevated within SOZs compared to other areas. To test this prediction, we analyzed archived samples of interictal electrocorticographic (ECoG) signals recorded from patients who became seizure-free after surgery targeting SOZs identified by multiday intracranial recordings. We show that in the gamma band, AECs between nodes within SOZs are markedly elevated relative to those elsewhere. AEC-based node strength, eigencentrality, and clustering coefficient are also robustly increased within the SOZ with maxima in the low-gamma band (permutation test Z-scores \u3e 8) and yield moderate discriminability of the SOZ using ROC analysis (maximal mean AUC ~ 0.73). By contrast to AECs, phase locking values (PLVs), a measure of narrow-band phase coupling across sites, and PLV-based graph metrics discriminate the seizure onset nodes weakly. Our results suggest that gamma band AECs may provide a clinically useful marker of cortical hyperexcitability in focal epilepsy

    Neuroticism in temporal lobe epilepsy is associated with altered limbic-frontal lobe resting-state functional connectivity

    No full text
    Neuroticism, a core personality trait characterized by a tendency towards experiencing negative affect, has been reported to be higher in people with temporal lobe epilepsy (TLE) compared with healthy individuals. Neuroticism is a known predictor of depression and anxiety, which also occur more frequently in people with TLE. The purpose of this study was to identify abnormalities in whole-brain resting-state functional connectivity in relation to neuroticism in people with TLE and to determine the degree of unique versus shared patterns of abnormal connectivity in relation to elevated symptoms of depression and anxiety. Ninety-three individuals with TLE (55 females) and 40 healthy controls (18 females) from the Epilepsy Connectome Project (ECP) completed measures of neuroticism, depression, and anxiety, which were all significantly higher in people with TLE compared with controls. Resting-state functional connectivity was compared between controls and groups with TLE with high and low neuroticism using analysis of variance (ANOVA) and t-test. In secondary analyses, the same analytics were performed using measures of depression and anxiety and the unique variance in resting-state connectivity associated with neuroticism independent of symptoms of depression and anxiety identified. Increased neuroticism was significantly associated with hyposynchrony between the right hippocampus and Brodmann area (BA) 9 (region of prefrontal cortex (PFC)) (p \u3c 0.005), representing a unique relationship independent of symptoms of depression and anxiety. Hyposynchrony of connection between the right hippocampus and BA47 (anterior frontal operculum) was associated with high neuroticism and with higher depression and anxiety scores (p \u3c 0.05), making it a shared abnormal connection for the three measures. In conclusion, increased neuroticism exhibits both unique and shared patterns of abnormal functional connectivity with depression and anxiety symptoms between regions of the mesial temporal and frontal lobe

    Network, clinical and sociodemographic features of cognitive phenotypes in temporal lobe epilepsy

    No full text
    This study explored the taxonomy of cognitive impairment within temporal lobe epilepsy and characterized the sociodemographic, clinical and neurobiological correlates of identified cognitive phenotypes. 111 temporal lobe epilepsy patients and 83 controls (mean ages 33 and 39, 57% and 61% female, respectively) from the Epilepsy Connectome Project underwent neuropsychological assessment, clinical interview, and high resolution 3T structural and resting-state functional MRI. A comprehensive neuropsychological test battery was reduced to core cognitive domains (language, memory, executive, visuospatial, motor speed) which were then subjected to cluster analysis. The resulting cognitive subgroups were compared in regard to sociodemographic and clinical epilepsy characteristics as well as variations in brain structure and functional connectivity. Three cognitive subgroups were identified (intact, language/memory/executive function impairment, generalized impairment) which differed significantly, in a systematic fashion, across multiple features. The generalized impairment group was characterized by an earlier age at medication initiation (P \u3c 0.05), fewer patient (P \u3c 0.001) and parental years of education (P \u3c 0.05), greater racial diversity (P \u3c 0.05), and greater number of lifetime generalized seizures (P \u3c 0.001). The three groups also differed in an orderly manner across total intracranial (P \u3c 0.001) and bilateral cerebellar cortex volumes (P \u3c 0.01), and rate of bilateral hippocampal atrophy (P \u3c 0.014), but minimally in regional measures of cortical volume or thickness. In contrast, large-scale patterns of cortical-subcortical covariance networks revealed significant differences across groups in global and local measures of community structure and distribution of hubs. Resting-state fMRI revealed stepwise anomalies as a function of cluster membership, with the most abnormal patterns of connectivity evident in the generalized impairment group and no significant differences from controls in the cognitively intact group. Overall, the distinct underlying cognitive phenotypes of temporal lobe epilepsy harbor systematic relationships with clinical, sociodemographic and neuroimaging correlates. Cognitive phenotype variations in patient and familial education and ethnicity, with linked variations in total intracranial volume, raise the question of an early and persisting socioeconomic-status related neurodevelopmental impact, with additional contributions of clinical epilepsy factors (e.g., lifetime generalized seizures). The neuroimaging features of cognitive phenotype membership are most notable for disrupted large scale cortical-subcortical networks and patterns of functional connectivity with bilateral hippocampal and cerebellar atrophy. The cognitive taxonomy of temporal lobe epilepsy appears influenced by features that reflect the combined influence of socioeconomic, neurodevelopmental and neurobiological risk factors

    Neuroanatomical correlates of personality traits in temporal lobe epilepsy: findings from the Epilepsy Connectome Project

    No full text
    Behavioral and personality disorders in temporal lobe epilepsy (TLE) have been a topic of interest and controversy for decades, with less attention paid to alterations in normal personality structure and traits. In this investigation, core personality traits (the Big 5) and their neurobiological correlates in TLE were explored using the Neuroticism Extraversion Openness-Five Factor Inventory (NEO-FFI) and structural magnetic resonance imaging (MRI) through the Epilepsy Connectome Project (ECP). NEO-FFI scores from 67 individuals with TLE (34.6 ± 9.5 years; 67% women) were compared to 31 healthy controls (32.8 ± 8.9 years; 41% women) to assess differences in the Big 5 traits (agreeableness, openness, conscientiousness, neuroticism, and extraversion). Individuals with TLE showed significantly higher neuroticism, with no significant differences on the other traits. Neural correlates of neuroticism were then determined in participants with TLE including cortical and subcortical volumes. Distributed reductions in cortical gray matter volumes were associated with increased neuroticism. Subcortically, hippocampal and amygdala volumes were negatively associated with neuroticism. These results offer insight into alterations in the Big 5 personality traits in TLE and their brain-related correlates
    corecore