329 research outputs found
Influence of magnetic fields on the spin reorientation transition in ultra-thin films
The dependence of the spin reorientation transition in ultra-thin
ferromagnetic films on external magnetic fields is studied. For different
orientations of the applied field with respect to the film, phase diagrams are
calculated within a mean field theory for the classical Heisenberg model. In
particular we find that the spin reorientation transition present in this model
is not suppressed completely by an applied field, as the magnetization
component perpendicular to the field may show spontaneous order in a certain
temperature interval.Comment: 11 pages(LaTeX2e), 6 figures(eps), submitted to Phil. Mag. B. See
also http://www.thp.Uni-Duisburg.DE/Publikationen/Publist_Us_R.htm
Fractal properties of relaxation clusters and phase transition in a stochastic sandpile automaton
We study numerically the spatial properties of relaxation clusters in a two
dimensional sandpile automaton with dynamic rules depending stochastically on a
parameter p, which models the effects of static friction. In the limiting cases
p=1 and p=0 the model reduces to the critical height model and critical slope
model, respectively. At p=p_c, a continuous phase transition occurs to the
state characterized by a nonzero average slope. Our analysis reveals that the
loss of finite average slope at the transition is accompanied by the loss of
fractal properties of the relaxation clusters.Comment: 11 page
Density fluctuations and phase separation in a traffic flow model
Within the Nagel-Schreckenberg traffic flow model we consider the transition
from the free flow regime to the jammed regime. We introduce a method of
analyzing the data which is based on the local density distribution. This
analyzes allows us to determine the phase diagram and to examine the separation
of the system into a coexisting free flow phase and a jammed phase above the
transition. The investigation of the steady state structure factor yields that
the decomposition in this phase coexistence regime is driven by density
fluctuations, provided they exceed a critical wavelength.Comment: in 'Traffic and Granular Flow 97', edited by D.E. Wolf and M.
Schreckenberg, Springer, Singapore (1998
Interface Motion in Disordered Ferromagnets
We consider numerically the depinning transition in the random-field Ising
model. Our analysis reveals that the three and four dimensional model displays
a simple scaling behavior whereas the five dimensional scaling behavior is
affected by logarithmic corrections. This suggests that d=5 is the upper
critical dimension of the depinning transition in the random-field Ising model.
Furthermore, we investigate the so-called creep regime (small driving fields
and temperatures) where the interface velocity is given by an Arrhenius law.Comment: some misprints correcte
Modeling exchange bias microscopically
Exchange bias is a horizontal shift of the hysteresis loop observed for a
ferromagnetic layer in contact with an antiferromagnetic layer. Since exchange
bias is related to the spin structure of the antiferromagnet, for its
fundamental understanding a detailed knowledge of the physics of the
antiferromagnetic layer is inevitable. A model is investigated where domains
are formed in the volume of the AFM stabilized by dilution. These domains
become frozen during the initial cooling procedure carrying a remanent net
magnetization which causes and controls exchange bias. Varying the anisotropy
of the antiferromagnet we find a nontrivial dependence of the exchange bias on
the anisotropy of the antiferromagnet.Comment: 7 pages, 5 figure
- …