53 research outputs found
Elements of oxidation/reduction balance in experimental hypothyroidism
Background: The aim of this study was to investigate the effect of the decreased level of thyroid hormones on selected parameters of the
oxidation/reduction balance by assessing the activity of antioxidant enzymes: superoxide dismutase (SOD), and glutathione peroxidase
(GSH-Px); the level of antioxidant vitamins (A, C, and E); and the concentration of compounds reacting with thiobarbituric acid (TBARS).
Material and methods: Investigations involved 20 Belgian giant rabbits of both sexes. Hypothyroidism was induced by intragastric administration
of thiamizole. Before this was done, blood was collected from the ear marginal vein (control group) and then the animals
received thiamizole through an intragastric tube at a dose of 2 mg/kg b.w. for 21 days. Blood was collected again (the experimental group)
and the following determinations were performed:
— in blood serum, the thyroid hormones T3, T4 and TSH;
— vitamin A, C and E blood serum concentrations;
— in erythrocytes, the concentration of compounds reacting with TBARS, SOD and GSH-Px.
Results: A 21-day exposure of rabbits to thiamazole (2 mg/kg b.w./24 h) resulted in a statistically significant decrease of TBARS, a decrease
of SOD and GPH-Px activity and in a statistically insignificant decrease in the level of vitamins A, C and E.
Conclusions: Hypothyroidism decreases the level of erythrocytes oxidation/reduction balance by diminishing oxidative lipids
damage and by decreasing the activity of antioxidative enzymes, but not by changes in the level of antioxidant vitamins.
(Pol J Endocrinol 2011; 62 (3): 220–223)Wstęp: Celem badania była ocena wpływu zmniejszenia stężenia hormonów tarczycy na wybrane parametry równowagi oksydacyjno-redukcyjnej
przez badanie aktywności enzymów antyoksydacyjnych ( SOD, GSH-Px), stężenia witamin antyoksydacyjnych (A, C, E) oraz
związków reagujących z kwasem tiobarbiturowym (TBARS).
Materiał i metody: Badania przeprowadzono na 40 królikach rasy olbrzym beligijski, obojga płci. Niedoczynność tarczycy wywołano
dożołądkowym podawaniem thiamazolu. Przed podaniem thiamazolu pobrano krew żylną (grupa kontrolna), a następnie przez 21 dni
zwierzęta otrzymywały dożołądkowo thiamazol w dawce 2 mg/kg mc. Po tym czasie ponownie pobierano krew (grupa badana) i oznaczano:
— stężenie hormonów tarczycy T3, T4 i TSH;
— stężenie witamin A, C i E w surowicy;
— stężenie związków reagujących z kwasem tiobarbiturowym (TBARS) i aktywność dysmutazy ponadtlenkowej (SOD) i peroksydazy
glutationowej (GPH-Px) w erytrocytach.
Wyniki: Po 21 dniach dożołądkowego podawania królikom thiamazolu (2 mg/kg mc./24 h) stwierdzono statystycznie znamienne zmniejszenie
stężenia TBARS, obniżenie aktywności SOD i GPH-Px oraz statystycznie nieznamienne obniżenie stężenia witaminy A, C i E.
Wnioski: Niedoczynność tarczycy obniża poziom równowagi oksydacyjno-redukcyjnej erytrocytów poprzez zmniejszenie oksydacyjnych
uszkodzeń tłuszczów oraz zmniejszenie aktywności enzymów antyoksydacyjnych, a nie poprzez zmiany w stężeniu witamin antyoksydacyjnych.
(Endokrynol Pol 2011; 62 (3): 220–223
Interactions of tumour-derived micro(nano)vesicles with human gastric cancer cells
BACKGROUND: Tumour cells release membrane micro(nano)fragments called tumour-derived microvesicles (TMV) that are believed to play an important role in cancer progression. TMV suppress/modify antitumour response of the host, but there is also some evidence for their direct interaction with cancer cells. In cancer patients TMV are present in body fluid and tumour microenvironment. The present study aimed at characterization of whole types/subpopulations, but not only exosomes, of TMV from newly established gastric cancer cell line (called GC1415) and to define their interactions with autologous cells. METHODS: TMV were isolated from cell cultures supernatants by centrifugation at 50,000×g and their phenotype was determined by flow cytometry. The size of TMV was analysed by dynamic light scattering and nanoparticle tracking analysis, while morphology by transmission electron microscopy and atomic force microscopy. Interactions of TMV with cancer cells were visualized using fluorescence-activated cell sorter, confocal and atomic force microscopy, biological effects by xenografts in NOD SCID mice. RESULTS: Isolated TMV showed expression of CD44H, CD44v6 (hyaluronian receptors), CCR6 (chemokine receptor) and HER-2/neu molecules, exhibited different shapes and sizes (range 60–900 nm, highest frequency of particles with size range of 80–120 nm). TMV attached to autologous cancer cells within 2 h and then were internalized by them at 24 h. CD44H, CD44v6 and CCR6 molecules may play a role in attachment of TMV to cancer cells, while HER-2 associated with CD24 be involved in promoting cancer cells growth. Pre-exposure of cancer cells to TMV resulted in enhancement of tumour growth and cancer cell-induced angiogenesis in NOD SCID mice model. CONCLUSIONS: TMV interact directly with cancer cells serving as macro-messengers and molecular cargo transfer between gastric cancer cells resulting in enhancement of tumour growth. TMV should be considered in future as target of anticancer therapy
Evaluation of diffusion-weighted MRI and (18F) fluorothymidine-PET biomarkers for early response assessment in patients with operable non-small cell lung cancer treated with neoadjuvant chemotherapy
Objective: To correlate changes in the apparent diffusion coefficient (ADC) from diffusion-weighted (DW)-MRI and standardised uptake value (SUV) from fluorothymidine (18FLT)-PET/CT with histopathological estimates of response in patients with non-small cell lung cancer (NSCLC) treated with neoadjuvant chemotherapy and track longitudinal changes in these biomarkers in a multicentre, multivendor setting. Methods: 14 patients with operable NSCLC recruited to a prospective, multicentre imaging trial (EORTC-1217) were treated with platinum-based neoadjuvant chemotherapy. 13 patients had DW-MRI and FLT-PET/CT at baseline (10 had both), 12 were re-imaged at Day 14 (eight dual-modality) and nine after completing chemotherapy, immediately before surgery (six dual-modality). Surgical specimens (haematoxylin-eosin and Ki67 stained) estimated the percentage of residual viable tumour/necrosis and proliferation index. Results: Despite the small numbers,significant findings were possible. ADCmedian increased (p 30% reduction in unidimensional measurement pre-surgery), showed an increase at Day 14 in ADC75th centile and reduction in total lesion proliferation (SUVmean x proliferative volume) greater than established measurement variability. Change in imaging biomarkers did not correlate with histological response (residual viable tumour, necrosis). Conclusion: Changes in ADC and FLT-SUV following neoadjuvant chemotherapy in NSCLC were measurable by Day 14 and preceded changes in unidimensional size but did not correlate with histopathological response. However, the magnitude of the changes and their utility in predicting (non-) response (tumour size/clinical outcome) remains to be established. Advances in knowledge: During treatment, ADC increase precedes size reductions, but does not reflect histopathological necrosis
A next generation vaccine against human rabies based on a single dose of a chimpanzee adenovirus vector serotype C
Rabies, caused by RNA viruses in the Genus Lyssavirus, is the most fatal of all infectious diseases. This neglected zoonosis remains a major public health problem in developing countries, causing the death of an estimated 25,000-159,000 people each year, with more than half of them in children. The high incidence of human rabies in spite of effective vaccines is mainly linked to the lack of compliance with the complicated administration schedule, inadequacies of the community public health system for local administration by the parenteral route and the overall costs of the vaccine. The goal of our work was the development of a simple, affordable and effective vaccine strategy to prevent human rabies virus infection. This next generation vaccine is based on a replication-defective chimpanzee adenovirus vector belonging to group C, ChAd155-RG, which encodes the rabies glycoprotein (G). We demonstrate here that a single dose of this vaccine induces protective efficacy in a murine model of rabies challenge and elicits strong and durable neutralizing antibody responses in vaccinated non-human primates. Importantly, we demonstrate that one dose of a commercial rabies vaccine effectively boosts the neutralizing antibody responses induced by ChAd155-RG in vaccinated monkeys, showing the compatibility of the novel vectored vaccine with the current post-exposure prophylaxis in the event of rabies virus exposure. Finally, we demonstrate that antibodies induced by ChAd155-RG can also neutralize European bat lyssaviruses 1 and 2 (EBLV-1 and EBLV-2) found in bat reservoirs
Correction: A next generation vaccine against human rabies based on a single dose of a chimpanzee adenovirus vector serotype C.
[This corrects the article DOI: 10.1371/journal.pntd.0008459.]
NIST Interlaboratory Study on Glycosylation Analysis of Monoclonal Antibodies: Comparison of Results from Diverse Analytical Methods
Glycosylation is a topic of intense current interest in the
development of biopharmaceuticals because it is related
to drug safety and efficacy. This work describes results of
an interlaboratory study on the glycosylation of the Primary
Sample (PS) of NISTmAb, a monoclonal antibody
reference material. Seventy-six laboratories from industry,
university, research, government, and hospital sectors
in Europe, North America, Asia, and Australia submit-
Avenue, Silver Spring, Maryland 20993; 22Glycoscience Research Laboratory, Genos, Borongajska cesta 83h, 10 000 Zagreb, Croatia;
23Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovacˇ ic´ a 1, 10 000 Zagreb, Croatia; 24Department of Chemistry, Georgia
State University, 100 Piedmont Avenue, Atlanta, Georgia 30303; 25glyXera GmbH, Brenneckestrasse 20 * ZENIT / 39120 Magdeburg, Germany;
26Health Products and Foods Branch, Health Canada, AL 2201E, 251 Sir Frederick Banting Driveway, Ottawa, Ontario, K1A 0K9 Canada;
27Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama Higashi-Hiroshima 739–8530 Japan; 28ImmunoGen,
830 Winter Street, Waltham, Massachusetts 02451; 29Department of Medical Physiology, Jagiellonian University Medical College,
ul. Michalowskiego 12, 31–126 Krakow, Poland; 30Department of Pathology, Johns Hopkins University, 400 N. Broadway Street Baltimore,
Maryland 21287; 31Mass Spec Core Facility, KBI Biopharma, 1101 Hamlin Road Durham, North Carolina 27704; 32Division of Mass
Spectrometry, Korea Basic Science Institute, 162 YeonGuDanji-Ro, Ochang-eup, Cheongwon-gu, Cheongju Chungbuk, 363–883 Korea
(South); 33Advanced Therapy Products Research Division, Korea National Institute of Food and Drug Safety, 187 Osongsaengmyeong 2-ro
Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do, 363–700, Korea (South); 34Center for Proteomics and Metabolomics, Leiden
University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands; 35Ludger Limited, Culham Science Centre, Abingdon,
Oxfordshire, OX14 3EB, United Kingdom; 36Biomolecular Discovery and Design Research Centre and ARC Centre of Excellence for Nanoscale
BioPhotonics (CNBP), Macquarie University, North Ryde, Australia; 37Proteomics, Central European Institute for Technology, Masaryk
University, Kamenice 5, A26, 625 00 BRNO, Czech Republic; 38Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse
1, 39106 Magdeburg, Germany; 39Department of Biomolecular Sciences, Max Planck Institute of Colloids and Interfaces, 14424
Potsdam, Germany; 40AstraZeneca, Granta Park, Cambridgeshire, CB21 6GH United Kingdom; 41Merck, 2015 Galloping Hill Rd, Kenilworth,
New Jersey 07033; 42Analytical R&D, MilliporeSigma, 2909 Laclede Ave. St. Louis, Missouri 63103; 43MS Bioworks, LLC, 3950 Varsity Drive
Ann Arbor, Michigan 48108; 44MSD, Molenstraat 110, 5342 CC Oss, The Netherlands; 45Exploratory Research Center on Life and Living
Systems (ExCELLS), National Institutes of Natural Sciences, 5–1 Higashiyama, Myodaiji, Okazaki 444–8787 Japan; 46Graduate School of
Pharmaceutical Sciences, Nagoya City University, 3–1 Tanabe-dori, Mizuhoku, Nagoya 467–8603 Japan; 47Medical & Biological Laboratories
Co., Ltd, 2-22-8 Chikusa, Chikusa-ku, Nagoya 464–0858 Japan; 48National Institute for Biological Standards and Control, Blanche Lane, South
Mimms, Potters Bar, Hertfordshire EN6 3QG United Kingdom; 49Division of Biological Chemistry & Biologicals, National Institute of Health
Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158–8501 Japan; 50New England Biolabs, Inc., 240 County Road, Ipswich, Massachusetts
01938; 51New York University, 100 Washington Square East New York City, New York 10003; 52Target Discovery Institute, Nuffield Department
of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom; 53GlycoScience Group, The National Institute for
Bioprocessing Research and Training, Fosters Avenue, Mount Merrion, Blackrock, Co. Dublin, Ireland; 54Department of Chemistry, North
Carolina State University, 2620 Yarborough Drive Raleigh, North Carolina 27695; 55Pantheon, 201 College Road East Princeton, New Jersey
08540; 56Pfizer Inc., 1 Burtt Road Andover, Massachusetts 01810; 57Proteodynamics, ZI La Varenne 20–22 rue Henri et Gilberte Goudier 63200
RIOM, France; 58ProZyme, Inc., 3832 Bay Center Place Hayward, California 94545; 59Koichi Tanaka Mass Spectrometry Research Laboratory,
Shimadzu Corporation, 1 Nishinokyo Kuwabara-cho Nakagyo-ku, Kyoto, 604 8511 Japan; 60Children’s GMP LLC, St. Jude Children’s
Research Hospital, 262 Danny Thomas Place Memphis, Tennessee 38105; 61Sumitomo Bakelite Co., Ltd., 1–5 Muromati 1-Chome, Nishiku,
Kobe, 651–2241 Japan; 62Synthon Biopharmaceuticals, Microweg 22 P.O. Box 7071, 6503 GN Nijmegen, The Netherlands; 63Takeda
Pharmaceuticals International Co., 40 Landsdowne Street Cambridge, Massachusetts 02139; 64Department of Chemistry and Biochemistry,
Texas Tech University, 2500 Broadway, Lubbock, Texas 79409; 65Thermo Fisher Scientific, 1214 Oakmead Parkway Sunnyvale, California
94085; 66United States Pharmacopeia India Pvt. Ltd. IKP Knowledge Park, Genome Valley, Shamirpet, Turkapally Village, Medchal District,
Hyderabad 500 101 Telangana, India; 67Alberta Glycomics Centre, University of Alberta, Edmonton, Alberta T6G 2G2 Canada; 68Department
of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2 Canada; 69Department of Chemistry, University of California, One Shields Ave,
Davis, California 95616; 70Horva´ th Csaba Memorial Laboratory for Bioseparation Sciences, Research Center for Molecular Medicine, Doctoral
School of Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Egyetem ter 1, Hungary; 71Translational Glycomics
Research Group, Research Institute of Biomolecular and Chemical Engineering, University of Pannonia, Veszprem, Egyetem ut 10, Hungary;
72Delaware Biotechnology Institute, University of Delaware, 15 Innovation Way Newark, Delaware 19711; 73Proteomics Core Facility, University
of Gothenburg, Medicinaregatan 1G SE 41390 Gothenburg, Sweden; 74Department of Medical Biochemistry and Cell Biology, University of
Gothenburg, Institute of Biomedicine, Sahlgrenska Academy, Medicinaregatan 9A, Box 440, 405 30, Gothenburg, Sweden; 75Department of
Clinical Chemistry and Transfusion Medicine, Sahlgrenska Academy at the University of Gothenburg, Bruna Straket 16, 41345 Gothenburg,
Sweden; 76Department of Chemistry, University of Hamburg, Martin Luther King Pl. 6 20146 Hamburg, Germany; 77Department of Chemistry,
University of Manitoba, 144 Dysart Road, Winnipeg, Manitoba, Canada R3T 2N2; 78Laboratory of Mass Spectrometry of Interactions and
Systems, University of Strasbourg, UMR Unistra-CNRS 7140, France; 79Natural and Medical Sciences Institute, University of Tu¨ bingen,
Markwiesenstrae 55, 72770 Reutlingen, Germany; 80Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical
Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands; 81Division of Bioanalytical Chemistry, Amsterdam Institute for
Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, de Boelelaan 1085, 1081 HV Amsterdam, The Netherlands; 82Department
of Chemistry, Waters Corporation, 34 Maple Street Milford, Massachusetts 01757; 83Zoetis, 333 Portage St. Kalamazoo, Michigan 49007
Author’s Choice—Final version open access under the terms of the Creative Commons CC-BY license.
Received July 24, 2019, and in revised form, August 26, 2019
Published, MCP Papers in Press, October 7, 2019, DOI 10.1074/mcp.RA119.001677
ER: NISTmAb Glycosylation Interlaboratory Study
12 Molecular & Cellular Proteomics 19.1
Downloaded from https://www.mcponline.org by guest on January 20, 2020
ted a total of 103 reports on glycan distributions. The
principal objective of this study was to report and compare
results for the full range of analytical methods presently
used in the glycosylation analysis of mAbs. Therefore,
participation was unrestricted, with laboratories
choosing their own measurement techniques. Protein glycosylation
was determined in various ways, including at
the level of intact mAb, protein fragments, glycopeptides,
or released glycans, using a wide variety of methods for
derivatization, separation, identification, and quantification.
Consequently, the diversity of results was enormous,
with the number of glycan compositions identified by
each laboratory ranging from 4 to 48. In total, one hundred
sixteen glycan compositions were reported, of which 57
compositions could be assigned consensus abundance
values. These consensus medians provide communityderived
values for NISTmAb PS. Agreement with the consensus
medians did not depend on the specific method or
laboratory type. The study provides a view of the current
state-of-the-art for biologic glycosylation measurement
and suggests a clear need for harmonization of glycosylation
analysis methods. Molecular & Cellular Proteomics
19: 11–30, 2020. DOI: 10.1074/mcp.RA119.001677.L
An update on xylan structure, biosynthesis, and potential commercial applications
• Xylan is an abundant carbohydrate component of plant cell walls that is vital for proper cell wall structure and vascular tissue development. • Xylan structure is known to vary between different tissues and species. • The role of xylan in the plant cell wall is to interact with cellulose, lignin, and hemicelluloses. • Xylan synthesis is directed by several types of Golgi-localized enzymes. • Xylan is being explored as an eco-friendly resource for diverse commercial applications
Potato protection according to the principles of integrated pest management. Part II. Sustainable method of chemical potato protectio
Działania stosowane w integrowanej ochronie roślin (IPM) można podzielić na działania strategiczne i taktyczne. Działania taktyczne obejmują elementy zrównoważonej ochrony chemicznej, takie jak wybór środka ochrony roślin, liczby aplikacji i wykorzystanie systemów decyzyjnych (DSS) w ochronie przed patogenami czy zastosowanie progów ekonomicznej szkodliwości w zwalczaniu szkodników. Według obowiązujących zasad integrowanej ochrony metodę chemiczną można stosować jedynie w razie niezbędnej konieczności, w momencie istotnego zagrożenia lub po przekroczeniu progu ekonomicznej szkodliwości zwalczanego agrofaga. Przed zastosowanie ochrony chemicznej ważne jest również monitorowanie chronionej uprawy ziemniaka i prognozowanie zagrożeń. W zwalczaniu zarazy ziemniaka ciągłe śledzenie zmian sprawcy i charakteryzowanie inwazyjnych genotypów jest wstępnym i koniecznym warunkiem działań IPM i zrównoważonego stosowania fungicydów. Zmiany w populacjach P. infestans wpływają bezpośrednio na możliwość wykorzystania odporności odmian, wiarygodność systemów ostrzegających przed wystąpieniem choroby i skuteczność działania fungicydów. Strategie zwalczania mogą opierać się na harmonogramach zabiegów, wykonywanych z większą lub mniejszą częstotliwością albo bazować na zaleceniach DSS. DSS łączy wszystkie istotne informacje by wygenerować informację dotyczącą terminu zabiegu, zwiększa skuteczność zwalczania bez zwiększenia ryzyka, może także być użyty by uzasadnić potrzebę zastosowania fungicydu. W pracy przedstawiono także zasady i możliwości właściwego zwalczania szkodników bez zwiększania ilości pestycydów i zmniejszenia skuteczności ochrony (np. wykorzystanie progów szkodliwości, wykorzystanie środków biologicznej ochrony).Control measures in integrated pest management (IPM) can be divided into strategic and tactical measures. Tactical measures include elements of sustainable chemical protection such as pesticide choice, limiting the number of sprays and use of decision support systems (DSS) in control of pathogens or using economic thresholds of harm in control of pests. According to the obliging principles of integrated pest management, chemical method can be used only in case of necessity, at the time of significant risks or above the threshold of economic harm of controlled agrophages. Before the application of chemical protection, it is also important to monitor the protected potato crop and to forecast risks. In control of potato late blight constant monitoring of populations and characterization of invasive genotypes are prerequisite and necessary for the deployment of IPM measures and sustainable using of fungicides. Changes in P. infestans populations directly influence the deployment of resistant cultivars, the reliability of disease warning systems and the efficacy of fungicides. A control strategy can be based on a schedule with more or less fixed intervals or based on recommendation derived from a DSS. DSSs integrate all relevant information to generate spraying advice, increase the efficacy of control without increasing risk and can also be used to justify fungicide inputs. In the paper we also presented the principles and the possibility of proper pest control without a decrease in protection efficacy and increasing of pesticides input into the environment (eg. use of the threshold of economic harm or use of biological products in protection)
Prace oryginalne/original PaPers Elements of oxidation/reduction balance in experimental hypothyroidism Elementy bariery oksydacyjno-redukcyjnej w doświadczalnej hypotyreozie
Abstract Background: The aim of this study was to investigate the effect of the decreased level of thyroid hormones on selected parameters of the oxidation/reduction balance by assessing the activity of antioxidant enzymes: superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px); the level of antioxidant vitamins (A, C, and E); and the concentration of compounds reacting with thiobarbituric acid (TBARS). Material and methods: Investigations involved 20 Belgian giant rabbits of both sexes. Hypothyroidism was induced by intragastric administration of thiamizole. Before this was done, blood was collected from the ear marginal vein (control group) and then the animals received thiamizole through an intragastric tube at a dose of 2 mg/kg b.w. for 21 days. Blood was collected again (the experimental group) and the following determinations were performed: -in blood serum, the thyroid hormones T3, T4 and TSH; -vitamin A, C and E blood serum concentrations; -in erythrocytes, the concentration of compounds reacting with TBARS, SOD and GSH-Px
Potato protection according to the principles of integrated pest management. Part I. Non-chemical methods of protection
Od 1. stycznia 2014, wszystkie kraje Unii Europejskiej zobowiązane są do stosowania zasad Integrowanej Ochrony Roślin (IPM), zgodnie z dyrektywą 2009/128/WE oraz rozporządzeniem nr 1107/2009. W pracy omówiono definicje dotyczące integrowanej ochrony roślin i określono różnice między IPM (integrowaną ochroną roślin) a IP (integrowaną produkcją roślin). W ochronie upraw ziemniaka stosuje się więcej fungicydów niż w innych uprawach. Zintegrowana ochrona wymaga zatem połączenie różnych metod postępowania, aby utrzymać niski poziom grzybowych i bakteryjnych patogenów, szkodników i chwastów i jednocześnie zachować dobrą jakość środowiska. Wyniki wieloletnich badań prowadzonych w uprawach ziemniaka przez zespół autorów oraz dane literaturowe pozwoliły uszeregować ważne elementy integrowanej ochrony ziemniaka, wykorzy¬stywane w uprawach ziemniaka na wszystkich etapach jego rozwoju. Działania stosowane w ochronie można podzielić na działania strategiczne i taktyczne. Działania strategiczne (niechemiczne metody) mające na celu zmniejszenie nasilenia i presji agrofagów wykorzystujące elementy, takie jak płodo¬zmian, nawożenie, wybór odmiany i działania ograniczające źródła infekcji zostały przedstawione w tej części pracy.Since 1st January of 2014, all countries of the European Union are under an obligation to apply the principles of Integrated Pest Management (IPM) in accordance with Directive 2009/128/EC and Regulation No 1107/2009. In this paper the definitions relating to the integrated pest management are discussed and the differences between the IPM (integrated plant protection) and the IP (integrated plant production) are defined. More fungicides are applied to protect potato crops than in any other crop. Integrated management therefore requires a combination of management techniques in order to keep fungal and bacterial pathogens, pests and weeds at low levels and at the same time to maintain the quality of the environment. The results of long-term experiments carried out by a team of authors and the literature data allowed to arrange the most important, non-chemical elements of the IPM of applied in potato crops at all stages of its development. Control measures can be divided in strategic and tactical measures. Strategic measures (non-chemical methods), aiming at reducing the occurrence of agrophages and the infection pressure, such as rotation, fertilization, cultivar choice and measures to limit primary inoculum sources, are presented in this part of the work
- …