2 research outputs found
Resonant fully dielectric metasurfaces for ultrafast terahertz pulse generation
Metasurfaces represent a new frontier in materials science paving for unprecedented methods of controlling electromagnetic waves, with a range of applications spanning from sensing to imaging and communications. For pulsed terahertz (THz) generation, metasurfaces offer a gateway to tuneable thin emitters that can be utilized for large-area imaging, microscopy, and spectroscopy. In literature, THz-emitting metasurfaces generally exhibit high absorption, being based either on metals or on semiconductors excited in highly resonant regimes. Here, the use of a fully dielectric semiconductor exploiting morphology-mediated resonances and inherent quadratic nonlinear response is proposed. This system exhibits a remarkable 40-fold efficiency enhancement compared to the unpatterned at the peak of the optimized wavelength range, demonstrating its potential as a scalable emitter design.</p
Data for "Resonant Fully dielectric metasurfaces for ultrafast Terahertz pulse generation"
Dataset to accompany the paper"Resonant Fully dielectric metasurfaces for ultrafast Terahertz pulse generation."The dataset is provided in a .mat format,. Separated into folders for each metasurface denoted in the paper. Then each file is labelled by by input wavelength of the laser. Each metasurface also has a power folder as measured by the opo. Each file is broken into two sets, the reading of the lock-in amplifier and the time axis.Inside the theoretical modelling folder is the .mat data for the theoretical modelling, separated by metasurface and then inside the file separated by energy, thz frequency and wavelength.</p